David Menchaca Santos, Pauline Thüne, Jan Martin Zepter, Mattia Marinelli
{"title":"Business cases for degradation-aware bidirectional charging of residential users and heavy-duty vehicle fleets","authors":"David Menchaca Santos, Pauline Thüne, Jan Martin Zepter, Mattia Marinelli","doi":"10.1016/j.etran.2024.100389","DOIUrl":null,"url":null,"abstract":"<div><div>In the push towards decarbonizing the transport sector, integrating electric vehicles (EVs) is crucial. Vehicle-to-everything services can address concerns about EV acceptance and grid integration, but viable business models are necessary to incentivize user participation. This paper presents a techno-economic mixed integer linear programming optimization model to assess the feasibility of bidirectional charging for residential users (RUs) and heavy-duty fleet vehicles. The model ensures proper battery degradation management and integrates renewable energy sources at charging locations. Price arbitrage (PA), specifically vehicle-to-home (V2H) and residential vehicle-to-grid (V2G), is explored for RUs. For larger EV fleets, V2G PA and V2G combined with frequency containment reserve for disturbances (FCR-D) are investigated. Business cases guide the optimization, simulating a year of operation in Eastern Denmark. The results are compared to a baseline scenario with no bidirectional charging capability. RUs achieve average cost savings of 176<!--> <!-->€<!--> <!-->with a payback period of 5 to 23 years, depending on the charging equipment supplier. V2H proves most suitable for <em>remote</em> users with flexible charging patterns. While EV fleets do not see significant savings with V2G alone, V2G combined with FCR-D yields savings of 330<!--> <!--> <!-->thousand <!--> <!-->€<!--> <!-->with a payback period of 3 to 17 years. Challenges remain due to the rarity of commercially available bidirectional charging equipment and limited data on driving patterns. However, our analysis shows that bidirectional charging offers substantial financial incentives for both RUs and fleet managers, promoting EV adoption and advancing transport sector decarbonization.</div></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"23 ","pages":"Article 100389"},"PeriodicalIF":15.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116824000791","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In the push towards decarbonizing the transport sector, integrating electric vehicles (EVs) is crucial. Vehicle-to-everything services can address concerns about EV acceptance and grid integration, but viable business models are necessary to incentivize user participation. This paper presents a techno-economic mixed integer linear programming optimization model to assess the feasibility of bidirectional charging for residential users (RUs) and heavy-duty fleet vehicles. The model ensures proper battery degradation management and integrates renewable energy sources at charging locations. Price arbitrage (PA), specifically vehicle-to-home (V2H) and residential vehicle-to-grid (V2G), is explored for RUs. For larger EV fleets, V2G PA and V2G combined with frequency containment reserve for disturbances (FCR-D) are investigated. Business cases guide the optimization, simulating a year of operation in Eastern Denmark. The results are compared to a baseline scenario with no bidirectional charging capability. RUs achieve average cost savings of 176 € with a payback period of 5 to 23 years, depending on the charging equipment supplier. V2H proves most suitable for remote users with flexible charging patterns. While EV fleets do not see significant savings with V2G alone, V2G combined with FCR-D yields savings of 330 thousand € with a payback period of 3 to 17 years. Challenges remain due to the rarity of commercially available bidirectional charging equipment and limited data on driving patterns. However, our analysis shows that bidirectional charging offers substantial financial incentives for both RUs and fleet managers, promoting EV adoption and advancing transport sector decarbonization.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.