Xinxi Li , Wensheng Yang , Likun Yin , Shuangyi Zhang , Yuhang Wu , Ya Mao , Wei Jia , Di Wu , Kai Chen , Lifan Yuan , Xiaoyu Zhou , Canbing Li
{"title":"Advancing lithium battery safety: Introducing a composite phase change material with anti-leakage and fire-resistant properties","authors":"Xinxi Li , Wensheng Yang , Likun Yin , Shuangyi Zhang , Yuhang Wu , Ya Mao , Wei Jia , Di Wu , Kai Chen , Lifan Yuan , Xiaoyu Zhou , Canbing Li","doi":"10.1016/j.etran.2024.100387","DOIUrl":null,"url":null,"abstract":"<div><div>The thermal safety of batteries has still existed challenge in energy-storage power stations and electric vehicles. Composite phase change material (CPCM) as a passive cooling system has great potential in the application of controlling an uneven temperature distribution, but its high flammability and susceptibility to leakage severely restrict its widespread adoption, especially in battery packs for electric vehicles and energy storage. Herein, an innovative paraffin/expanded graphite/[Ca(polyethylene glycol)<sub>2</sub>]Cl<sub>2</sub> coordination polymer/triphenyl phosphate (TPP)/hexaphenoxycyclotriphosphazene (HPCP) flame retardant multifunctional CPCM (PPCTH) has been introduced and utilized in battery module for thermal management and preventing thermal runaway. PPCTH2 has contained TPP/HPCP with the proportion of 1:1 which provides a multifunctional CPCM with excellent antileakage properties, high thermal conductivity, superior flame-retardant ability, the PPCTH2 exhibits excellent shape stability without collapsing at 200 °C. Moreover, the total heat release and smoke production of PPCTH2 are 108.8 MJ/m<sup>2</sup> and 8.4 m<sup>2</sup>, respectively. Additionally, the prismatic battery module endowed with PPCTH2 can maintain the maximum temperature below 50 °C and balance the temperature difference within 4.2 °C at a 2 C discharge rate. Thus, the battery module with PPCTH2 can not only improve the temperature consistency even during long cycling processes but also lengthen the temperature rising time and decrease heat accumulation, further suppressing thermal runaway. Overall, this research presents a multifunctional CPCM with high fire resistance and shape stability, which may contribute to the research and design of improved thermal safety for battery packs and energy-storage units.</div></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"23 ","pages":"Article 100387"},"PeriodicalIF":15.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116824000778","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The thermal safety of batteries has still existed challenge in energy-storage power stations and electric vehicles. Composite phase change material (CPCM) as a passive cooling system has great potential in the application of controlling an uneven temperature distribution, but its high flammability and susceptibility to leakage severely restrict its widespread adoption, especially in battery packs for electric vehicles and energy storage. Herein, an innovative paraffin/expanded graphite/[Ca(polyethylene glycol)2]Cl2 coordination polymer/triphenyl phosphate (TPP)/hexaphenoxycyclotriphosphazene (HPCP) flame retardant multifunctional CPCM (PPCTH) has been introduced and utilized in battery module for thermal management and preventing thermal runaway. PPCTH2 has contained TPP/HPCP with the proportion of 1:1 which provides a multifunctional CPCM with excellent antileakage properties, high thermal conductivity, superior flame-retardant ability, the PPCTH2 exhibits excellent shape stability without collapsing at 200 °C. Moreover, the total heat release and smoke production of PPCTH2 are 108.8 MJ/m2 and 8.4 m2, respectively. Additionally, the prismatic battery module endowed with PPCTH2 can maintain the maximum temperature below 50 °C and balance the temperature difference within 4.2 °C at a 2 C discharge rate. Thus, the battery module with PPCTH2 can not only improve the temperature consistency even during long cycling processes but also lengthen the temperature rising time and decrease heat accumulation, further suppressing thermal runaway. Overall, this research presents a multifunctional CPCM with high fire resistance and shape stability, which may contribute to the research and design of improved thermal safety for battery packs and energy-storage units.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.