Electric vehicle charging flexibility assessment for load shifting based on real-world charging pattern identification

IF 15 1区 工程技术 Q1 ENERGY & FUELS Etransportation Pub Date : 2025-01-01 DOI:10.1016/j.etran.2024.100367
Xiaohui Li , Zhenpo Wang , Lei Zhang , Zhijia Huang , Fangce Guo , Aruna Sivakumar , Dirk Uwe Sauer
{"title":"Electric vehicle charging flexibility assessment for load shifting based on real-world charging pattern identification","authors":"Xiaohui Li ,&nbsp;Zhenpo Wang ,&nbsp;Lei Zhang ,&nbsp;Zhijia Huang ,&nbsp;Fangce Guo ,&nbsp;Aruna Sivakumar ,&nbsp;Dirk Uwe Sauer","doi":"10.1016/j.etran.2024.100367","DOIUrl":null,"url":null,"abstract":"<div><div>Coordinated charging control for electric vehicles (EVs) can contribute to load balancing and renewable energy utilization. This paper proposes a novel framework for assessing the flexibility of EVs under different charging control strategies through a rule-based identification of charging patterns. First, key categories of EV charging activity chains, characterized by the sequence of parking and charging activities between adjacent trips, are extracted from real-world EV operation data. Simulations are then conducted by switching charging patterns to represent three coordinated charging control methods: delayed charging, reduced-power charging, and smart charging with Time-of-Use (ToU) tariffs. These strategies are applied by modifying the charging time or charging rate within the original charging sessions. Several evaluation metrics are introduced to quantify each strategy's impact on load profile reshaping, flexibility utilization efficiency, user involvement, and energy cost saving. Comparison results show that smart charging with ToU tariffs outperforms the other two strategies, though the effectiveness of each scheme varies with charging patterns. The findings highlight the idle parking time and its ratio to the required charging time as key indicators for identifying potential EV users for coordinated charging control. Additionally, it is shown that shifting 1 % of EV charging load out of peak periods requires at least 4 % of user participation, while at least 3 % is needed for shifting 1 % of EV charging load into valley periods. The proposed pattern-based charging model and evaluation framework offer valuable insights for designing more efficient, cost-effective, and user-friendly EV charging scheduling strategies.</div></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"23 ","pages":"Article 100367"},"PeriodicalIF":15.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116824000572","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Coordinated charging control for electric vehicles (EVs) can contribute to load balancing and renewable energy utilization. This paper proposes a novel framework for assessing the flexibility of EVs under different charging control strategies through a rule-based identification of charging patterns. First, key categories of EV charging activity chains, characterized by the sequence of parking and charging activities between adjacent trips, are extracted from real-world EV operation data. Simulations are then conducted by switching charging patterns to represent three coordinated charging control methods: delayed charging, reduced-power charging, and smart charging with Time-of-Use (ToU) tariffs. These strategies are applied by modifying the charging time or charging rate within the original charging sessions. Several evaluation metrics are introduced to quantify each strategy's impact on load profile reshaping, flexibility utilization efficiency, user involvement, and energy cost saving. Comparison results show that smart charging with ToU tariffs outperforms the other two strategies, though the effectiveness of each scheme varies with charging patterns. The findings highlight the idle parking time and its ratio to the required charging time as key indicators for identifying potential EV users for coordinated charging control. Additionally, it is shown that shifting 1 % of EV charging load out of peak periods requires at least 4 % of user participation, while at least 3 % is needed for shifting 1 % of EV charging load into valley periods. The proposed pattern-based charging model and evaluation framework offer valuable insights for designing more efficient, cost-effective, and user-friendly EV charging scheduling strategies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Etransportation
Etransportation Engineering-Automotive Engineering
CiteScore
19.80
自引率
12.60%
发文量
57
审稿时长
39 days
期刊介绍: eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation. The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment. Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.
期刊最新文献
Advanced pulse charging strategies enhancing performances of lithium-ion battery: Fundamentals, advances and outlooks Transport mechanisms analysis of large-size proton exchange membrane fuel cells with novel integrated structure under ultra-high current densities Centralised vehicle-to-grid smart charging supported by PV generation for power variance minimisation at the transformer: A user’s perspective analysis Artificial intelligence algorithms optimize immersion boiling heat transfer strategies to mitigate thermal runaway of lithium-ion batteries Towards integrated thermal management systems in battery electric vehicles: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1