Design of high-energy-density lithium batteries: Liquid to all solid state

IF 15 1区 工程技术 Q1 ENERGY & FUELS Etransportation Pub Date : 2025-01-01 DOI:10.1016/j.etran.2024.100382
Haozhe Du , Xu Zhang , Haijun Yu
{"title":"Design of high-energy-density lithium batteries: Liquid to all solid state","authors":"Haozhe Du ,&nbsp;Xu Zhang ,&nbsp;Haijun Yu","doi":"10.1016/j.etran.2024.100382","DOIUrl":null,"url":null,"abstract":"<div><div>With the rising demand of lithium batteries from application fields including electric vehicles (EVs) and various electric aircrafts, it is imperative to greatly enhance the energy density of lithium batteries by rational design. However, there is still a lack of design roadmap for high-energy-density lithium batteries, largely owing to the uncertain selections of electrochemically active materials and the complicated relationships of diverse factors. In this article, based on the discussion of effects of key components and prototype design of lithium batteries with different energy density classes, we aim to tentatively present an overall and systematic design principle and roadmap, covering the key factors and reflecting crucial relationships. This article starts from the fundamental principles of battery design, and the effects of cathode, anode, electrolyte, and other components to realize high-energy-density lithium batteries have been discussed. Based on the prototype design of high-energy-density lithium batteries, it is shown that energy densities of different classes up to 1000 Wh/kg can be realized, where lithium-rich layered oxides (LLOs) and solid-state electrolytes play central roles to gain high energy densities above 500 Wh/kg. Lithium batteries are thus categorized according to different energy density classes, with available component options, to meet their most suitable application scenes.</div></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"23 ","pages":"Article 100382"},"PeriodicalIF":15.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116824000729","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

With the rising demand of lithium batteries from application fields including electric vehicles (EVs) and various electric aircrafts, it is imperative to greatly enhance the energy density of lithium batteries by rational design. However, there is still a lack of design roadmap for high-energy-density lithium batteries, largely owing to the uncertain selections of electrochemically active materials and the complicated relationships of diverse factors. In this article, based on the discussion of effects of key components and prototype design of lithium batteries with different energy density classes, we aim to tentatively present an overall and systematic design principle and roadmap, covering the key factors and reflecting crucial relationships. This article starts from the fundamental principles of battery design, and the effects of cathode, anode, electrolyte, and other components to realize high-energy-density lithium batteries have been discussed. Based on the prototype design of high-energy-density lithium batteries, it is shown that energy densities of different classes up to 1000 Wh/kg can be realized, where lithium-rich layered oxides (LLOs) and solid-state electrolytes play central roles to gain high energy densities above 500 Wh/kg. Lithium batteries are thus categorized according to different energy density classes, with available component options, to meet their most suitable application scenes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Etransportation
Etransportation Engineering-Automotive Engineering
CiteScore
19.80
自引率
12.60%
发文量
57
审稿时长
39 days
期刊介绍: eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation. The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment. Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.
期刊最新文献
Advanced pulse charging strategies enhancing performances of lithium-ion battery: Fundamentals, advances and outlooks Transport mechanisms analysis of large-size proton exchange membrane fuel cells with novel integrated structure under ultra-high current densities Centralised vehicle-to-grid smart charging supported by PV generation for power variance minimisation at the transformer: A user’s perspective analysis Artificial intelligence algorithms optimize immersion boiling heat transfer strategies to mitigate thermal runaway of lithium-ion batteries Towards integrated thermal management systems in battery electric vehicles: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1