Tatiana Lapina , Yuhai Xiang , Qi Yao , Dean Chen , Jian Li , Paul Steinmann , Stephan Rudykh
{"title":"Microstructural buckling in soft visco-hyperelastic laminates","authors":"Tatiana Lapina , Yuhai Xiang , Qi Yao , Dean Chen , Jian Li , Paul Steinmann , Stephan Rudykh","doi":"10.1016/j.ijsolstr.2025.113242","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we study the role of visco-(hyper)elasticity in the microstructural buckling of soft laminates under compressive loads. We find that the onset of buckling is related to the contrast in specific stress components; this allows us to develop analytical estimates for the critical loading. Our numerical analysis provides details on the dependence of critical strain and wavelength on the loading strain rate. We show that by activating the viscoelasticity of the stiffer layer with an increasing strain rate, one can promote the early development of the buckling (the critical strain decreases as the strain rate is increased). The tunability of the critical strain is bounded by the limits for fast and slow loading rates. Furthermore, the buckling wavelength can be tuned through strain rate variability; this effect is stronger in laminates with lower volume fractions (of stiff layer phase), while for high volume fractions, laminates tend to develop longer wavelength instabilities with diminishing tunability.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"311 ","pages":"Article 113242"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768325000289","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we study the role of visco-(hyper)elasticity in the microstructural buckling of soft laminates under compressive loads. We find that the onset of buckling is related to the contrast in specific stress components; this allows us to develop analytical estimates for the critical loading. Our numerical analysis provides details on the dependence of critical strain and wavelength on the loading strain rate. We show that by activating the viscoelasticity of the stiffer layer with an increasing strain rate, one can promote the early development of the buckling (the critical strain decreases as the strain rate is increased). The tunability of the critical strain is bounded by the limits for fast and slow loading rates. Furthermore, the buckling wavelength can be tuned through strain rate variability; this effect is stronger in laminates with lower volume fractions (of stiff layer phase), while for high volume fractions, laminates tend to develop longer wavelength instabilities with diminishing tunability.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.