Multiaxial yield behavior of transversely isotropic closed-cell aluminum foams

IF 3.4 3区 工程技术 Q1 MECHANICS International Journal of Solids and Structures Pub Date : 2025-02-28 DOI:10.1016/j.ijsolstr.2025.113322
Erdong Wang , Jingjing Cai , Xintao Huo , Xiao Guo
{"title":"Multiaxial yield behavior of transversely isotropic closed-cell aluminum foams","authors":"Erdong Wang ,&nbsp;Jingjing Cai ,&nbsp;Xintao Huo ,&nbsp;Xiao Guo","doi":"10.1016/j.ijsolstr.2025.113322","DOIUrl":null,"url":null,"abstract":"<div><div>Mechanical properties of metallic foams will exhibit direction-dependency when the cell shape anisotropy is generated during the manufacturing process. To provide effective design and analysis for the foam-based structures in engineering applications, it is essential to gain a robust understanding of the multiaxial yield properties of anisotropic foams. High-fidelity Voronoi foam model is constructed based on the statistical microstructure information that are measured using micro-CT technique. Transversely isotropic Voronoi foams are generated and adopted to conduct virtual multiaxial experiments. Numerical results show that large plastic deformation is mainly concentrated nearby the rigid platens in uniaxial, biaxial and triaxial compression, while a shear-like deformation localization bands is formed in the compression-shear loading. Sufficient yield points are determined in multiaxial loadings as per a total dissipation energy-based criterion. Numerical isotropic yield surfaces are plotted in the mean-effective stress plane and expand with increasing relative density, which can be well fitted using Zhang yield criteria. For transversely isotropic foams, the dispersion degree of yield points in the mean-effective stress plane is increased with increasing geometric stretch factor. The transversely isotropic yield surfaces are scaled proportionally with the uniaxial yield strength along transverse direction. The extended Hill’s anisotropic yield criterion can generally capture initial yielding behavior of transversely isotropic foams with different anisotropy coefficients and relative densities, outperforming other isotropic yield criteria.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"314 ","pages":"Article 113322"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768325001088","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical properties of metallic foams will exhibit direction-dependency when the cell shape anisotropy is generated during the manufacturing process. To provide effective design and analysis for the foam-based structures in engineering applications, it is essential to gain a robust understanding of the multiaxial yield properties of anisotropic foams. High-fidelity Voronoi foam model is constructed based on the statistical microstructure information that are measured using micro-CT technique. Transversely isotropic Voronoi foams are generated and adopted to conduct virtual multiaxial experiments. Numerical results show that large plastic deformation is mainly concentrated nearby the rigid platens in uniaxial, biaxial and triaxial compression, while a shear-like deformation localization bands is formed in the compression-shear loading. Sufficient yield points are determined in multiaxial loadings as per a total dissipation energy-based criterion. Numerical isotropic yield surfaces are plotted in the mean-effective stress plane and expand with increasing relative density, which can be well fitted using Zhang yield criteria. For transversely isotropic foams, the dispersion degree of yield points in the mean-effective stress plane is increased with increasing geometric stretch factor. The transversely isotropic yield surfaces are scaled proportionally with the uniaxial yield strength along transverse direction. The extended Hill’s anisotropic yield criterion can generally capture initial yielding behavior of transversely isotropic foams with different anisotropy coefficients and relative densities, outperforming other isotropic yield criteria.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
8.30%
发文量
405
审稿时长
70 days
期刊介绍: The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.
期刊最新文献
Multiaxial yield behavior of transversely isotropic closed-cell aluminum foams An anisotropic constitutive relationship by a series of 8 chain models Prediction of necking instability under tension-shear stress state based on updated modified maximum force criterion Deformation and energy absorption characteristics of graded auxetic metamaterials featuring peanut-shaped perforations under in-plane compression Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1