Modeling flood propagation and cascading failures in interdependent transportation and stormwater networks

IF 4.1 3区 工程技术 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Critical Infrastructure Protection Pub Date : 2025-01-16 DOI:10.1016/j.ijcip.2025.100741
H M Imran Kays, Arif Mohaimin Sadri, K.K. "Muralee" Muraleetharan, P. Scott Harvey, Gerald A. Miller
{"title":"Modeling flood propagation and cascading failures in interdependent transportation and stormwater networks","authors":"H M Imran Kays,&nbsp;Arif Mohaimin Sadri,&nbsp;K.K. \"Muralee\" Muraleetharan,&nbsp;P. Scott Harvey,&nbsp;Gerald A. Miller","doi":"10.1016/j.ijcip.2025.100741","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the challenge of modeling flood propagation and cascading failures in geographically interdependent transportation and stormwater systems, filling a critical gap in the literature by effectively capturing the temporal progression and spatial distribution of failures in interdependent systems. We developed a contagion-based Susceptible-Exposed-Flooded-Recovered (SEFR) model to monitor flood propagation dynamics within these interconnected systems. We established a spatial interdependency threshold for transportation and stormwater systems using a multilayer network representation and incorporated the state-of-the-art Hydrologic Engineering Center's River Analysis System (HEC-RAS) to generate reliable flood data. The SEFR model combines the topological characteristics of the multilayer network with simulated flood data to accurately model the propagation of flood damage and cascading failures. Focusing on Norman, Oklahoma, we calibrated the SEFR model using the HEC-RAS 2D flood simulation data for a major precipitation event on July 27, 2021. Results demonstrate the SEFR model's ability to identify the spatiotemporal variations in flood propagation, highlighting critical infrastructure components at risk, including specific road segments and stormwater system elements vulnerable to cascading failures during flooding events. The findings provide new insights into interdependent system resilience and inform intervention strategies to mitigate adverse flooding impacts, enhancing the robustness of critical infrastructure against natural disasters.</div></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"48 ","pages":"Article 100741"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874548225000034","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the challenge of modeling flood propagation and cascading failures in geographically interdependent transportation and stormwater systems, filling a critical gap in the literature by effectively capturing the temporal progression and spatial distribution of failures in interdependent systems. We developed a contagion-based Susceptible-Exposed-Flooded-Recovered (SEFR) model to monitor flood propagation dynamics within these interconnected systems. We established a spatial interdependency threshold for transportation and stormwater systems using a multilayer network representation and incorporated the state-of-the-art Hydrologic Engineering Center's River Analysis System (HEC-RAS) to generate reliable flood data. The SEFR model combines the topological characteristics of the multilayer network with simulated flood data to accurately model the propagation of flood damage and cascading failures. Focusing on Norman, Oklahoma, we calibrated the SEFR model using the HEC-RAS 2D flood simulation data for a major precipitation event on July 27, 2021. Results demonstrate the SEFR model's ability to identify the spatiotemporal variations in flood propagation, highlighting critical infrastructure components at risk, including specific road segments and stormwater system elements vulnerable to cascading failures during flooding events. The findings provide new insights into interdependent system resilience and inform intervention strategies to mitigate adverse flooding impacts, enhancing the robustness of critical infrastructure against natural disasters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Critical Infrastructure Protection
International Journal of Critical Infrastructure Protection COMPUTER SCIENCE, INFORMATION SYSTEMS-ENGINEERING, MULTIDISCIPLINARY
CiteScore
8.90
自引率
5.60%
发文量
46
审稿时长
>12 weeks
期刊介绍: The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing. The scope of the journal includes, but is not limited to: 1. Analysis of security challenges that are unique or common to the various infrastructure sectors. 2. Identification of core security principles and techniques that can be applied to critical infrastructure protection. 3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures. 4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.
期刊最新文献
Modeling flood propagation and cascading failures in interdependent transportation and stormwater networks OptAML: Optimized adversarial machine learning on water treatment and distribution systems Artificial immunity-based energy theft detection for advanced metering infrastructures An efficient convolutional neural network based attack detection for smart grid in 5G-IOT Beyond botnets: Autonomous Firmware Zombie Attack in industrial control systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1