Jie Fu , Chengxi Yang , Yuxuan Liu , Kunsan Zhang , Jiaqi Li , Beibei Li
{"title":"Artificial immunity-based energy theft detection for advanced metering infrastructures","authors":"Jie Fu , Chengxi Yang , Yuxuan Liu , Kunsan Zhang , Jiaqi Li , Beibei Li","doi":"10.1016/j.ijcip.2025.100739","DOIUrl":null,"url":null,"abstract":"<div><div>Advanced Metering Infrastructure (AMI) is envisioned to enable smart energy management and consumption while ensuring the integrity of real energy consumption data. However, existing smart meters, gateways, and communication channels are usually weakly protected, often opening a huge door for data eavesdroppers who may be easily to further construct energy thefts. Although some energy theft detection schemes have already been reported in the literature, they often fail to take into account the dense data distribution characteristics of energy consumption data, resulting in compromised detection performance. To this end, we in this paper propose a novel ar<strong>T</strong>ificial <strong>IM</strong>mune based <strong>E</strong>nergy theft <strong>D</strong>etection (TIMED) scheme, which can effectively identify five types of energy thefts. Specifically, we first develop an energy consumption data pre-processing method, which can effectively reduce the dimensionality of raw energy consumption data to facilitate the data analyzing efficiency. Second, we design a center-distance-based energy theft detector generation method to create high-quality detectors with low elimination rates. Last, we devise a nonself-based hole repair method for energy theft detectors, which can further reduce the false negative alarms. Extensive experiments on a real public AMI dataset demonstrate that the proposed TIMED scheme is highly effective in identifying pulse attacks, scaling attacks, ramping attacks, random attacks, and smooth-curve attacks. The results show that TIMED outperforms many existing machine learning and traditional artificial immunity-based energy theft detection methods.</div></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"48 ","pages":"Article 100739"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874548225000010","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced Metering Infrastructure (AMI) is envisioned to enable smart energy management and consumption while ensuring the integrity of real energy consumption data. However, existing smart meters, gateways, and communication channels are usually weakly protected, often opening a huge door for data eavesdroppers who may be easily to further construct energy thefts. Although some energy theft detection schemes have already been reported in the literature, they often fail to take into account the dense data distribution characteristics of energy consumption data, resulting in compromised detection performance. To this end, we in this paper propose a novel arTificial IMmune based Energy theft Detection (TIMED) scheme, which can effectively identify five types of energy thefts. Specifically, we first develop an energy consumption data pre-processing method, which can effectively reduce the dimensionality of raw energy consumption data to facilitate the data analyzing efficiency. Second, we design a center-distance-based energy theft detector generation method to create high-quality detectors with low elimination rates. Last, we devise a nonself-based hole repair method for energy theft detectors, which can further reduce the false negative alarms. Extensive experiments on a real public AMI dataset demonstrate that the proposed TIMED scheme is highly effective in identifying pulse attacks, scaling attacks, ramping attacks, random attacks, and smooth-curve attacks. The results show that TIMED outperforms many existing machine learning and traditional artificial immunity-based energy theft detection methods.
期刊介绍:
The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing.
The scope of the journal includes, but is not limited to:
1. Analysis of security challenges that are unique or common to the various infrastructure sectors.
2. Identification of core security principles and techniques that can be applied to critical infrastructure protection.
3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures.
4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.