Mustafa Sinasi Ayas , Enis Kara , Selen Ayas , Ali Kivanc Sahin
{"title":"OptAML: Optimized adversarial machine learning on water treatment and distribution systems","authors":"Mustafa Sinasi Ayas , Enis Kara , Selen Ayas , Ali Kivanc Sahin","doi":"10.1016/j.ijcip.2025.100740","DOIUrl":null,"url":null,"abstract":"<div><div>This research presents the optimized adversarial machine learning framework, OptAML, which is developed for use in water distribution and treatment systems. In consideration of the physical invariants of these systems, the OptAML generates adversarial samples capable of deceiving a hybrid convolutional neural network-long short-term memory network model. The efficacy of the framework is assessed using the Secure Water Treatment (SWaT) and Water Distribution (WADI) datasets. The findings demonstrate that OptAML is capable of effectively evading rule checkers and significantly reducing the accuracy of anomaly detection frameworks in both systems. Additionally, the study investigates a defense mechanism that demonstrates enhanced robustness against these adversarial attacks and is based on adversarial training. Our results underscore the necessity for robust and flexible protection tactics and highlight the shortcomings of the machine learning-based anomaly detection systems for critical infrastructure that are currently in place.</div></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"48 ","pages":"Article 100740"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874548225000022","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This research presents the optimized adversarial machine learning framework, OptAML, which is developed for use in water distribution and treatment systems. In consideration of the physical invariants of these systems, the OptAML generates adversarial samples capable of deceiving a hybrid convolutional neural network-long short-term memory network model. The efficacy of the framework is assessed using the Secure Water Treatment (SWaT) and Water Distribution (WADI) datasets. The findings demonstrate that OptAML is capable of effectively evading rule checkers and significantly reducing the accuracy of anomaly detection frameworks in both systems. Additionally, the study investigates a defense mechanism that demonstrates enhanced robustness against these adversarial attacks and is based on adversarial training. Our results underscore the necessity for robust and flexible protection tactics and highlight the shortcomings of the machine learning-based anomaly detection systems for critical infrastructure that are currently in place.
期刊介绍:
The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing.
The scope of the journal includes, but is not limited to:
1. Analysis of security challenges that are unique or common to the various infrastructure sectors.
2. Identification of core security principles and techniques that can be applied to critical infrastructure protection.
3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures.
4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.