{"title":"The wear analysis and life prediction of Cr12MoV alloy steel hammer dies during the radial forging process","authors":"Chenxi Bao, Yuzhao Yang, Cheng Xu","doi":"10.1016/j.cirpj.2025.01.002","DOIUrl":null,"url":null,"abstract":"<div><div>Radial forging is widely utilized in defense, aerospace, and automotive industries. However, understanding of hammer die wear during radial forging traditionally relies heavily on practical experience and lacks detailed research. This paper proposed a method for predicting hammer die failure during radial forging by using finite element simulations combined with the Archard wear model. The feasibility of this method was validated through profilometer measurements and scanning electron microscopy (SEM) observations of the worn hammer dies obtained from practical production. Through the mutual validation of simulations and experiments, the study found that when the hammer die material is specially treated Cr12MoV alloy steel, under the investigated operating conditions, the maximum surface wear of the hammer die exceeded 0.4 mm after approximately 13 cumulative hours of operation. This wear significantly affected the formation of the internal profile of the workpiece, at which point the hammer die was considered to have failed. The study deepens the understanding of the details of hammer die wear in the radial forging process and fills a gap in the prediction of hammer die failure during this process.</div></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"57 ","pages":"Pages 63-77"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581725000033","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Radial forging is widely utilized in defense, aerospace, and automotive industries. However, understanding of hammer die wear during radial forging traditionally relies heavily on practical experience and lacks detailed research. This paper proposed a method for predicting hammer die failure during radial forging by using finite element simulations combined with the Archard wear model. The feasibility of this method was validated through profilometer measurements and scanning electron microscopy (SEM) observations of the worn hammer dies obtained from practical production. Through the mutual validation of simulations and experiments, the study found that when the hammer die material is specially treated Cr12MoV alloy steel, under the investigated operating conditions, the maximum surface wear of the hammer die exceeded 0.4 mm after approximately 13 cumulative hours of operation. This wear significantly affected the formation of the internal profile of the workpiece, at which point the hammer die was considered to have failed. The study deepens the understanding of the details of hammer die wear in the radial forging process and fills a gap in the prediction of hammer die failure during this process.
期刊介绍:
The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.