{"title":"Two-layer Data-driven Robust Scheduling for Industrial Heat Loads","authors":"Chuanshen Wu;Yue Zhou;Jianzhong Wu","doi":"10.35833/MPCE.2024.000105","DOIUrl":null,"url":null,"abstract":"This paper establishes a two-layer data-driven robust scheduling method to deal with the significant computational complexity and uncertainties in scheduling industrial heat loads. First, a two-layer deterministic scheduling model is proposed to address the computational burden of utilizing flexibility from a large number of bitumen tanks (BTs). The key feature of this model is the capability to reduce the number of control variables through analyzing and modeling the clustered temperature transfer of BTs. Second, to tackle the uncertainties in the scheduling problem, historical data regarding BTs are collected and analyzed, and a data-driven piecewise linear Kernel-based support vector clustering technique is employed to construct the uncertainty set with convex boundaries and adjustable conservatism, based on which robust optimization can be conducted. The case results indicate that the proposed method enables the utilization of flexibility in BTs, improving the level of onsite photovoltaic consumption and reducing the aggregated load fluctuation.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"265-275"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10640362","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10640362/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper establishes a two-layer data-driven robust scheduling method to deal with the significant computational complexity and uncertainties in scheduling industrial heat loads. First, a two-layer deterministic scheduling model is proposed to address the computational burden of utilizing flexibility from a large number of bitumen tanks (BTs). The key feature of this model is the capability to reduce the number of control variables through analyzing and modeling the clustered temperature transfer of BTs. Second, to tackle the uncertainties in the scheduling problem, historical data regarding BTs are collected and analyzed, and a data-driven piecewise linear Kernel-based support vector clustering technique is employed to construct the uncertainty set with convex boundaries and adjustable conservatism, based on which robust optimization can be conducted. The case results indicate that the proposed method enables the utilization of flexibility in BTs, improving the level of onsite photovoltaic consumption and reducing the aggregated load fluctuation.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.