Elmahedi Mahalal;Eslam Hasan;Muhammad Ismail;Zi-Yang Wu;Mostafa M. Fouda;Zubair Md Fadlullah;Nei Kato
{"title":"Concept Drift Aware Wireless Key Generation in Dynamic LiFi Networks","authors":"Elmahedi Mahalal;Eslam Hasan;Muhammad Ismail;Zi-Yang Wu;Mostafa M. Fouda;Zubair Md Fadlullah;Nei Kato","doi":"10.1109/OJCOMS.2024.3524497","DOIUrl":null,"url":null,"abstract":"This paper studies the generation of cryptographic keys from wireless channels in light-fidelity (LiFi) networks. Unlike existing studies, we account for several practical considerations (a) realistic indoor multi-user mobility scenarios, (b) non-ideal channel reciprocity given the unique characteristics of the downlink visible light (VL) and uplink infrared (IR) channels, (c) different room occupancy levels, (d) different room layouts, and (e) different receivers’ field-of-view (FoV). Since general channel models in dynamic LiFi networks are inaccurate, we propose a novel deep learning-based framework to generate secret keys with minimal key disagreement rate (KDR) and maximal key generation rate (KGR). However, we find that wireless channels in LiFi networks exhibit different statistical behaviors under various conditions, leading to concept drift in the deep learning model. As a result, key generation suffers from (a) a deterioration in KDR and KGR up to 29% and 38%, respectively, and (b) failing the NIST randomness test. To enable a concept drift aware framework, we propose an adaptive learning strategy using the similarity of channel probability density functions and the mix-of-experts ensemble method. Results show our adaptive learning strategy can achieve stable performance that passes the NIST randomness test and achieves 8% KDR and 89 bits/s KGR for a case of study with 60° FoV.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"742-758"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818749","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10818749/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the generation of cryptographic keys from wireless channels in light-fidelity (LiFi) networks. Unlike existing studies, we account for several practical considerations (a) realistic indoor multi-user mobility scenarios, (b) non-ideal channel reciprocity given the unique characteristics of the downlink visible light (VL) and uplink infrared (IR) channels, (c) different room occupancy levels, (d) different room layouts, and (e) different receivers’ field-of-view (FoV). Since general channel models in dynamic LiFi networks are inaccurate, we propose a novel deep learning-based framework to generate secret keys with minimal key disagreement rate (KDR) and maximal key generation rate (KGR). However, we find that wireless channels in LiFi networks exhibit different statistical behaviors under various conditions, leading to concept drift in the deep learning model. As a result, key generation suffers from (a) a deterioration in KDR and KGR up to 29% and 38%, respectively, and (b) failing the NIST randomness test. To enable a concept drift aware framework, we propose an adaptive learning strategy using the similarity of channel probability density functions and the mix-of-experts ensemble method. Results show our adaptive learning strategy can achieve stable performance that passes the NIST randomness test and achieves 8% KDR and 89 bits/s KGR for a case of study with 60° FoV.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.