Ag-Ag2O nanocomposite biosynthesis by mixed bacterial cultivation and effect of the ph on size and optical properties of the nanocomposite

IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of Materials Science: Materials in Medicine Pub Date : 2025-02-05 DOI:10.1007/s10856-024-06851-6
Morad G. S. S. Al-Asbahi, Bashir A. Al-Ofiri, Fuad A. A. Saad, Adnan Alnehia, Muhammad Hadi
{"title":"Ag-Ag2O nanocomposite biosynthesis by mixed bacterial cultivation and effect of the ph on size and optical properties of the nanocomposite","authors":"Morad G. S. S. Al-Asbahi,&nbsp;Bashir A. Al-Ofiri,&nbsp;Fuad A. A. Saad,&nbsp;Adnan Alnehia,&nbsp;Muhammad Hadi","doi":"10.1007/s10856-024-06851-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the influence of pH on the energy band gap and crystallite size during the synthesis of a novel Ag-Ag<sub>2</sub>O nanocomposites through the mixed cultivation of <i>Lactobacillus</i> sp. and <i>Bacillus</i> sp. A range of analytical techniques, including X-ray Diffraction (XRD), UV-visible Spectroscopy (UV-vis), Fourier Transform Infrared Spectroscopy (FTIR), and Transmission Electron Microscopy (TEM), were employed to investigate the structural and optical characteristics of the nanocomposites. XRD analysis confirmed the presence of cubic phases of Ag and Ag<sub>2</sub>O, with crystallite sizes varying from 8 to 44 nm; notably, smaller crystallites were observed at a pH of 6.5. UV-vis spectroscopy indicated an energy band gap ranging from 1.83 to 1.897 eV, suggesting promising applications for the material. The optimal pH for synthesis, which yielded the smallest particle size as verified by TEM, was identified as 6.5. FTIR analysis revealed the presence of biologically derived coating agents that may enhance the immutability and bioactivity of the nanocomposite. Antibacterial assays demonstrated significant efficacy against <i>Enterococcus faecalis</i>(<i>E. faecalis</i>) and <i>Escherichia coli</i>, particularly highlighting its effectiveness against <i>E. faecalis</i>. Hemolytic assays confirmed the biocompatibility of the nanocomposite at lower concentrations. These findings indicate the potential applications of the biogenic Ag-Ag<sub>2</sub>O nanocomposites in medical and environmental fields, offering a sustainable solution to challenges associated with bacterial contamination. Future research may focus on integrating these biologically synthesized nanoparticles into advanced materials and coatings to improve their performance.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-024-06851-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-024-06851-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the influence of pH on the energy band gap and crystallite size during the synthesis of a novel Ag-Ag2O nanocomposites through the mixed cultivation of Lactobacillus sp. and Bacillus sp. A range of analytical techniques, including X-ray Diffraction (XRD), UV-visible Spectroscopy (UV-vis), Fourier Transform Infrared Spectroscopy (FTIR), and Transmission Electron Microscopy (TEM), were employed to investigate the structural and optical characteristics of the nanocomposites. XRD analysis confirmed the presence of cubic phases of Ag and Ag2O, with crystallite sizes varying from 8 to 44 nm; notably, smaller crystallites were observed at a pH of 6.5. UV-vis spectroscopy indicated an energy band gap ranging from 1.83 to 1.897 eV, suggesting promising applications for the material. The optimal pH for synthesis, which yielded the smallest particle size as verified by TEM, was identified as 6.5. FTIR analysis revealed the presence of biologically derived coating agents that may enhance the immutability and bioactivity of the nanocomposite. Antibacterial assays demonstrated significant efficacy against Enterococcus faecalis(E. faecalis) and Escherichia coli, particularly highlighting its effectiveness against E. faecalis. Hemolytic assays confirmed the biocompatibility of the nanocomposite at lower concentrations. These findings indicate the potential applications of the biogenic Ag-Ag2O nanocomposites in medical and environmental fields, offering a sustainable solution to challenges associated with bacterial contamination. Future research may focus on integrating these biologically synthesized nanoparticles into advanced materials and coatings to improve their performance.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science: Materials in Medicine
Journal of Materials Science: Materials in Medicine 工程技术-材料科学:生物材料
CiteScore
8.00
自引率
0.00%
发文量
73
审稿时长
3.5 months
期刊介绍: The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.
期刊最新文献
Physical properties of zinc, silver, or cerium ion doped borate glass incorporated PCL/gelatin electrospun fibers and their interaction with NG108-15 neural cells New insights in large-pores mesoporous silica microspheres for hemostatic application Ag-Ag2O nanocomposite biosynthesis by mixed bacterial cultivation and effect of the ph on size and optical properties of the nanocomposite Impact of Gd, Pr, Yb, and Nd doping on the magnetic properties of Mg-ferrite nanoparticles In vivo bone regeneration performance of hydroxypropyl methylcellulose hydrogel-based composite bone cements in ovariectomized and ovary-intact rats: a preliminary investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1