Antimicrobial, antibiofilm, and antiurease activities of green-synthesized Zn, Se, and ZnSe nanoparticles against Streptococcus salivarius and Proteus mirabilis.
Sumeyra Gurkok, Murat Ozdal, Tuba Cakici, Esabi Basaran Kurbanoglu
{"title":"Antimicrobial, antibiofilm, and antiurease activities of green-synthesized Zn, Se, and ZnSe nanoparticles against Streptococcus salivarius and Proteus mirabilis.","authors":"Sumeyra Gurkok, Murat Ozdal, Tuba Cakici, Esabi Basaran Kurbanoglu","doi":"10.1007/s00449-025-03130-8","DOIUrl":null,"url":null,"abstract":"<p><p>This study assesses the antimicrobial, antibiofilm, and antiurease properties of selenium (Se), zinc (Zn), and zinc selenide (ZnSe) nanoparticles (NPs) against clinically pathogenic strains of Streptococcus salivarius and Proteus mirabilis. The Se, Zn, and ZnSe NPs, synthesized by Pseudomonas aeruginosa OG1, were characterized using transmission electron microscopy (TEM) revealing average sizes of approximately 30 ± 10 nm, 30 ± 15 nm, and 40 ± 10 nm, respectively. Atomic force microscopy (AFM) was used to examine the morphological and topological characteristics of the NPs. The structural and crystal characteristics were investigated using X-ray diffraction (XRD). Among the evaluated NPs, Zn NPs at a concentration of 200 mg/mL exhibited the most substantial growth inhibition zone against S. salivarius. Conversely, the highest antibiofilm activity was observed against P. mirabilis, notably with 200 µg/mL Zn NPs. In the context of antiurease activity, both 100 μg Zn and ZnSe NPs caused complete urease inhibition (100%) in P. mirabilis within the initial 5 h, with notable inhibition rates of 94% and 80%, respectively, observed against S. salivarius. Significantly, in the current landscape of NP research primarily focused on antimicrobial and antibiofilm properties, our study stands out due to its pioneering exploration of antiurease activities with these NPs. This distinctive emphasis on antiurease effects contributes original and unique value to our study, offering novel insights into the broader spectrum of NP applications, and paving the way for potential therapeutic advancements.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"589-603"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928436/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03130-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study assesses the antimicrobial, antibiofilm, and antiurease properties of selenium (Se), zinc (Zn), and zinc selenide (ZnSe) nanoparticles (NPs) against clinically pathogenic strains of Streptococcus salivarius and Proteus mirabilis. The Se, Zn, and ZnSe NPs, synthesized by Pseudomonas aeruginosa OG1, were characterized using transmission electron microscopy (TEM) revealing average sizes of approximately 30 ± 10 nm, 30 ± 15 nm, and 40 ± 10 nm, respectively. Atomic force microscopy (AFM) was used to examine the morphological and topological characteristics of the NPs. The structural and crystal characteristics were investigated using X-ray diffraction (XRD). Among the evaluated NPs, Zn NPs at a concentration of 200 mg/mL exhibited the most substantial growth inhibition zone against S. salivarius. Conversely, the highest antibiofilm activity was observed against P. mirabilis, notably with 200 µg/mL Zn NPs. In the context of antiurease activity, both 100 μg Zn and ZnSe NPs caused complete urease inhibition (100%) in P. mirabilis within the initial 5 h, with notable inhibition rates of 94% and 80%, respectively, observed against S. salivarius. Significantly, in the current landscape of NP research primarily focused on antimicrobial and antibiofilm properties, our study stands out due to its pioneering exploration of antiurease activities with these NPs. This distinctive emphasis on antiurease effects contributes original and unique value to our study, offering novel insights into the broader spectrum of NP applications, and paving the way for potential therapeutic advancements.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.