Stefanie Fritzsche, Marcus Popp, Lukas Spälter, Natalie Bonakdar, Nicolas Vogel, Kathrin Castiglione
{"title":"Recycling the recyclers: strategies for the immobilisation of a PET-degrading cutinase.","authors":"Stefanie Fritzsche, Marcus Popp, Lukas Spälter, Natalie Bonakdar, Nicolas Vogel, Kathrin Castiglione","doi":"10.1007/s00449-025-03131-7","DOIUrl":null,"url":null,"abstract":"<p><p>Enzymatic degradation of polyethylene terephthalate (PET) represents a sustainable approach to reducing plastic waste and protecting fossil resources. The cost efficiency of enzymatic PET degradation processes could be substantially improved by reusing the enzymes. However, conventional immobilisation strategies, such as binding to porous carriers, are challenging as the immobilised enzyme can only interact with the macromolecular solid PET substrate to a limited extent, thus reducing the degradation efficiency. To mitigate this challenge, this work compared different immobilisation strategies of the PET-degrading cutinase ICCG<sub>DAQI</sub>. Immobilisation approaches included enzyme fixation via linkers to carriers, the synthesis of cross-linked enzyme aggregates with different porosities, and immobilisation on stimulus-responsive polymers. The highest degradation efficiencies were obtained with the pH-responsive material Kollicoat<sup>®</sup>, where 80% of the initial enzyme activity could be recovered after immobilisation. Degradation of textile PET fibres by the cutinase-Kollicoat<sup>®</sup> immobilisate was investigated in batch reactions on a 1 L-scale. In three consecutive reaction cycles, the product yield of the released terephthalic acid exceeded 97% in less than 14 h. Even in the fifth cycle, 78% of the maximum yield was achieved in the same reaction time. An advantage of this process is the efficient pH-dependent recovery of the immobilisate after the reaction, which integrates seamlessly into the terephthalic acid recovery by lowering the pH after hydrolysis. This integration therefore not only simplifies the downstream processing, but also provides a cost-effective and resource-efficient solution for both enzyme reuse and product separation after PET degradation, making it a promising approach for industrial application.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03131-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Enzymatic degradation of polyethylene terephthalate (PET) represents a sustainable approach to reducing plastic waste and protecting fossil resources. The cost efficiency of enzymatic PET degradation processes could be substantially improved by reusing the enzymes. However, conventional immobilisation strategies, such as binding to porous carriers, are challenging as the immobilised enzyme can only interact with the macromolecular solid PET substrate to a limited extent, thus reducing the degradation efficiency. To mitigate this challenge, this work compared different immobilisation strategies of the PET-degrading cutinase ICCGDAQI. Immobilisation approaches included enzyme fixation via linkers to carriers, the synthesis of cross-linked enzyme aggregates with different porosities, and immobilisation on stimulus-responsive polymers. The highest degradation efficiencies were obtained with the pH-responsive material Kollicoat®, where 80% of the initial enzyme activity could be recovered after immobilisation. Degradation of textile PET fibres by the cutinase-Kollicoat® immobilisate was investigated in batch reactions on a 1 L-scale. In three consecutive reaction cycles, the product yield of the released terephthalic acid exceeded 97% in less than 14 h. Even in the fifth cycle, 78% of the maximum yield was achieved in the same reaction time. An advantage of this process is the efficient pH-dependent recovery of the immobilisate after the reaction, which integrates seamlessly into the terephthalic acid recovery by lowering the pH after hydrolysis. This integration therefore not only simplifies the downstream processing, but also provides a cost-effective and resource-efficient solution for both enzyme reuse and product separation after PET degradation, making it a promising approach for industrial application.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.