{"title":"Image recognition technology for bituminous concrete reservoir panel cracks based on deep learning.","authors":"Kai Hu, Yang Ling, Jie Liu","doi":"10.1371/journal.pone.0318550","DOIUrl":null,"url":null,"abstract":"<p><p>Detecting cracks in asphalt concrete slabs is challenging due to environmental factors like lighting changes, surface reflections, and weather conditions, which affect image quality and crack detection accuracy. This study introduces a novel deep learning-based anomaly model for effective crack detection. A large dataset of panel images was collected and processed using denoising, standardization, and data augmentation techniques, with crack areas labeled via LabelImg software. The core model is an improved Xception network, enhanced with an adaptive activation function, dynamic attention mechanism, and multi-level residual connections. These innovations optimize feature extraction, enhance feature weighting, and improve information transmission, significantly boosting accuracy and robustness. The improved model achieves a 97.6% accuracy and a Matthews correlation coefficient of 0.98, remaining stable under varying lighting conditions. This method not only provides a fresh approach to crack detection but also greatly enhances detection efficiency.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 2","pages":"e0318550"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0318550","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting cracks in asphalt concrete slabs is challenging due to environmental factors like lighting changes, surface reflections, and weather conditions, which affect image quality and crack detection accuracy. This study introduces a novel deep learning-based anomaly model for effective crack detection. A large dataset of panel images was collected and processed using denoising, standardization, and data augmentation techniques, with crack areas labeled via LabelImg software. The core model is an improved Xception network, enhanced with an adaptive activation function, dynamic attention mechanism, and multi-level residual connections. These innovations optimize feature extraction, enhance feature weighting, and improve information transmission, significantly boosting accuracy and robustness. The improved model achieves a 97.6% accuracy and a Matthews correlation coefficient of 0.98, remaining stable under varying lighting conditions. This method not only provides a fresh approach to crack detection but also greatly enhances detection efficiency.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage