Population Pharmacokinetics of Perampanel in Chinese Pediatric and Adult Patients With Epilepsy.

IF 2.8 4区 医学 Q2 MEDICAL LABORATORY TECHNOLOGY Therapeutic Drug Monitoring Pub Date : 2025-02-04 DOI:10.1097/FTD.0000000000001296
Jiayu Yang, Sitian Zhang, Zhigang Zhao, Shenghui Mei, Weixing Feng
{"title":"Population Pharmacokinetics of Perampanel in Chinese Pediatric and Adult Patients With Epilepsy.","authors":"Jiayu Yang, Sitian Zhang, Zhigang Zhao, Shenghui Mei, Weixing Feng","doi":"10.1097/FTD.0000000000001296","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Perampanel is a promising epilepsy treatment with an innovative mechanism of action. This study was performed to investigate the factors affecting perampanel clearance in a population pharmacokinetic (PPK) model of Chinese pediatric and adult patients with epilepsy.</p><p><strong>Methods: </strong>A total of 135 perampanel plasma concentrations from 125 patients with epilepsy were analyzed using the PPK model with nonlinear mixed-effects modeling. One-compartment and proportional residual models best described the pharmacokinetics of perampanel. Covariate effects on the model parameters were assessed using forward and backward elimination. Goodness-of-fit, bootstrapping, visual predictive checks, and normalized prediction distribution errors were used to evaluate the model. Monte Carlo simulations were conducted to assess the impact of covariate combinations on perampanel plasma concentrations at different dosages.</p><p><strong>Results: </strong>In the final PPK model, body weight (BW), concomitant carbamazepine (CBZ), oxcarbazepine (OXC), and C-reactive protein (CRP) levels significantly influenced perampanel clearance. The interindividual clearance was calculated as follows: 0.84 × (BW/70)0.53 × eCBZ × eOXC × eCRP (CBZ = 0.98, when comedicated with carbamazepine; OXC = 0.43, when comedicated with oxcarbazepine; CRP = -0.69, when CRP >15 mg/L, otherwise = 0). The estimates (relative standard error) for clearance and apparent volume of distribution of the final model were 0.84 L/h (8.75%) and 64.35 L (19.78%), respectively. The model maintained its stability and effectiveness with moderate predictability.</p><p><strong>Conclusions: </strong>BW and CBZ, OXC, and CRP levels may influence perampanel clearance in both pediatric and adult patients with epilepsy according to a population pharmacokinetic model that included real-world data.</p>","PeriodicalId":23052,"journal":{"name":"Therapeutic Drug Monitoring","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic Drug Monitoring","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FTD.0000000000001296","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Perampanel is a promising epilepsy treatment with an innovative mechanism of action. This study was performed to investigate the factors affecting perampanel clearance in a population pharmacokinetic (PPK) model of Chinese pediatric and adult patients with epilepsy.

Methods: A total of 135 perampanel plasma concentrations from 125 patients with epilepsy were analyzed using the PPK model with nonlinear mixed-effects modeling. One-compartment and proportional residual models best described the pharmacokinetics of perampanel. Covariate effects on the model parameters were assessed using forward and backward elimination. Goodness-of-fit, bootstrapping, visual predictive checks, and normalized prediction distribution errors were used to evaluate the model. Monte Carlo simulations were conducted to assess the impact of covariate combinations on perampanel plasma concentrations at different dosages.

Results: In the final PPK model, body weight (BW), concomitant carbamazepine (CBZ), oxcarbazepine (OXC), and C-reactive protein (CRP) levels significantly influenced perampanel clearance. The interindividual clearance was calculated as follows: 0.84 × (BW/70)0.53 × eCBZ × eOXC × eCRP (CBZ = 0.98, when comedicated with carbamazepine; OXC = 0.43, when comedicated with oxcarbazepine; CRP = -0.69, when CRP >15 mg/L, otherwise = 0). The estimates (relative standard error) for clearance and apparent volume of distribution of the final model were 0.84 L/h (8.75%) and 64.35 L (19.78%), respectively. The model maintained its stability and effectiveness with moderate predictability.

Conclusions: BW and CBZ, OXC, and CRP levels may influence perampanel clearance in both pediatric and adult patients with epilepsy according to a population pharmacokinetic model that included real-world data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Therapeutic Drug Monitoring
Therapeutic Drug Monitoring 医学-毒理学
CiteScore
5.00
自引率
8.00%
发文量
213
审稿时长
4-8 weeks
期刊介绍: Therapeutic Drug Monitoring is a peer-reviewed, multidisciplinary journal directed to an audience of pharmacologists, clinical chemists, laboratorians, pharmacists, drug researchers and toxicologists. It fosters the exchange of knowledge among the various disciplines–clinical pharmacology, pathology, toxicology, analytical chemistry–that share a common interest in Therapeutic Drug Monitoring. The journal presents studies detailing the various factors that affect the rate and extent drugs are absorbed, metabolized, and excreted. Regular features include review articles on specific classes of drugs, original articles, case reports, technical notes, and continuing education articles.
期刊最新文献
Population Pharmacokinetics of Perampanel in Chinese Pediatric and Adult Patients With Epilepsy. Delayed Drug-Drug Interaction Between Antiviral Drugs and Tacrolimus in a Pancreatic Islet Transplant Recipient with SARS-CoV-2 Pneumonia-A Case Study. Limited Sampling Strategies Fail to Accurately Predict Mycophenolic Acid Area Under the Curve in Kidney Transplant Recipients and the Impact of Enterohepatic Recirculation. Everolimus Personalized Therapy: Second Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Getting Tacrolimus Dosing Right.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1