Y single atoms boost MnO2 for efficient ambient formaldehyde catalytic oxidation

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL Separation and Purification Technology Pub Date : 2025-02-06 DOI:10.1016/j.seppur.2025.131962
Xuehong Zhang, Lingyun Guo, Yiling Wang, Bihong Lv, Zhiwei Huang, Xiaomin Wu, Huawang Zhao, Guohua Jing, Huazhen Shen
{"title":"Y single atoms boost MnO2 for efficient ambient formaldehyde catalytic oxidation","authors":"Xuehong Zhang, Lingyun Guo, Yiling Wang, Bihong Lv, Zhiwei Huang, Xiaomin Wu, Huawang Zhao, Guohua Jing, Huazhen Shen","doi":"10.1016/j.seppur.2025.131962","DOIUrl":null,"url":null,"abstract":"Formaldehyde (HCHO) is a hazardous indoor air pollutant requiring effective mitigation. Room-temperature catalytic oxidation is promising for its energy efficiency and ability to convert HCHO into harmless products. Manganese dioxide (MnO<sub>2</sub>) is a potential catalyst but exhibits low activity at ambient temperatures due to energy barriers in dehydrogenating intermediates. This study introduces Y single-atom-decorated MnO<sub>2</sub> <!-- -->as an efficient catalyst for HCHO oxidation. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC HAADF-STEM) and X-ray photoelectron spectroscopy (XPS) confirmed Y atom dispersion. Additionally, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), solid-state<!-- --> <sup>1</sup>H nuclear magnetic resonance spectroscopy (<sup>1</sup>H NMR) and density functional theory (DFT) revealed the mechanism by which Y atoms enhance HCHO oxidation. The results show that Y<sub>1</sub>/MnO<sub>2</sub> significantly outperforms pristine MnO<sub>2</sub> <!-- -->in CO<sub>2</sub> yield, with a prolonged high-efficiency period and substantially higher steady-state CO<sub>2</sub> production. Y single atoms (SAs) generate reactive oxygen species via oxygen vacancies formation in MnO<sub>2</sub>, leading to extended high efficiency. Additionally, Y SAs enhance the catalyst’s proton affinity, facilitating dioxymethylene (DOM) dehydrogenation and improving overall HCHO oxidation efficiency. This work offers a new perspective for designing efficient catalysts for indoor air purification.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"20 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.131962","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Formaldehyde (HCHO) is a hazardous indoor air pollutant requiring effective mitigation. Room-temperature catalytic oxidation is promising for its energy efficiency and ability to convert HCHO into harmless products. Manganese dioxide (MnO2) is a potential catalyst but exhibits low activity at ambient temperatures due to energy barriers in dehydrogenating intermediates. This study introduces Y single-atom-decorated MnO2 as an efficient catalyst for HCHO oxidation. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC HAADF-STEM) and X-ray photoelectron spectroscopy (XPS) confirmed Y atom dispersion. Additionally, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), solid-state 1H nuclear magnetic resonance spectroscopy (1H NMR) and density functional theory (DFT) revealed the mechanism by which Y atoms enhance HCHO oxidation. The results show that Y1/MnO2 significantly outperforms pristine MnO2 in CO2 yield, with a prolonged high-efficiency period and substantially higher steady-state CO2 production. Y single atoms (SAs) generate reactive oxygen species via oxygen vacancies formation in MnO2, leading to extended high efficiency. Additionally, Y SAs enhance the catalyst’s proton affinity, facilitating dioxymethylene (DOM) dehydrogenation and improving overall HCHO oxidation efficiency. This work offers a new perspective for designing efficient catalysts for indoor air purification.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甲醛(HCHO)是一种有害的室内空气污染物,需要有效的缓解措施。室温催化氧化因其能源效率高且能将 HCHO 转化为无害产品而大有可为。二氧化锰(MnO2)是一种潜在的催化剂,但由于脱氢中间体的能量障碍,在常温下活性较低。本研究介绍了作为 HCHO 氧化高效催化剂的 Y 单原子装饰二氧化锰。像差校正高角度环形暗场扫描透射电子显微镜(AC HAADF-STEM)和 X 射线光电子能谱(XPS)证实了 Y 原子的分散。此外,漫反射红外傅立叶变换光谱(DRIFTS)、固态 1H 核磁共振波谱(1H NMR)和密度泛函理论(DFT)揭示了 Y 原子促进 HCHO 氧化的机理。结果表明,Y1/MnO2 的二氧化碳产率明显优于原始 MnO2,其高效期延长,稳态二氧化碳产率大幅提高。Y 单原子(SA)通过 MnO2 中氧空位的形成产生活性氧,从而延长了高效率。此外,Y 单原子(SA)还能增强催化剂的质子亲和力,促进二氧亚甲基(DOM)的脱氢反应,提高 HCHO 的整体氧化效率。这项工作为设计用于室内空气净化的高效催化剂提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
期刊最新文献
Efficient recovery of valuable elements from oxygen-rich alkaline leaching solution of chrome-vanadium slag using selective crystallization separation process A 3D porous MnHCF/MXene electrode for enhanced deionization performance in high-salinity water Y single atoms boost MnO2 for efficient ambient formaldehyde catalytic oxidation Rose-inspired salt-responsive hierarchical microbead via in-situ growth of layered double hydroxide plates onto rosin-derived resin for efficient tetracycline removal: Ingenious design, advanced molecular simulations, and rethinking adsorption mass transfer Efficient development strategies for heavy oil reservoirs with a focus on rational utilization of water resources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1