Ultrafast and Universal Synthetic Route for Nanostructured Transition Metal Oxides Directly Grown on Substrates

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-02-06 DOI:10.1002/adma.202418407
Si Heon Lim, Geunwoo Kim, Sungjin Cho, Yeong Kwon Kim, Eun Bee Ko, Seon Yeon Choi, Jung A Heo, Daegun Kim, Hocheon Yoo, So‐Yeon Lee, YongJoo Kim, Pil‐Ryung Cha, Dong Yun Lee, Sunghun Lee, Byung Chul Jang, Yeonhoo Kim, Hyun Ho Kim
{"title":"Ultrafast and Universal Synthetic Route for Nanostructured Transition Metal Oxides Directly Grown on Substrates","authors":"Si Heon Lim, Geunwoo Kim, Sungjin Cho, Yeong Kwon Kim, Eun Bee Ko, Seon Yeon Choi, Jung A Heo, Daegun Kim, Hocheon Yoo, So‐Yeon Lee, YongJoo Kim, Pil‐Ryung Cha, Dong Yun Lee, Sunghun Lee, Byung Chul Jang, Yeonhoo Kim, Hyun Ho Kim","doi":"10.1002/adma.202418407","DOIUrl":null,"url":null,"abstract":"Nanostructured transition metal oxides (NTMOs) have consistently piqued scientific interest for several decades due to their remarkable versatility across various fields. More recently, they have gained significant attention as materials employed for energy storage/harvesting devices as well as electronic devices. However, mass production of high‐quality NTMOs in a well‐controlled manner still remains challenging. Here, a universal, ultrafast, and solvent‐free method is presented for producing highly crystalline NTMOs directly onto target substrates. The findings reveal that the growth mechanism involves the solidification of condensed liquid‐phase TMO microdroplets onto the substrate under an oxygen‐rich ambient condition. This enables a continuous process under ambient air conditions, allowing for processing within just a few tens of seconds per sample. Finally, it is confirmed that the method can be extended to the synthesis of various NTMOs and their related compounds.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"1 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202418407","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanostructured transition metal oxides (NTMOs) have consistently piqued scientific interest for several decades due to their remarkable versatility across various fields. More recently, they have gained significant attention as materials employed for energy storage/harvesting devices as well as electronic devices. However, mass production of high‐quality NTMOs in a well‐controlled manner still remains challenging. Here, a universal, ultrafast, and solvent‐free method is presented for producing highly crystalline NTMOs directly onto target substrates. The findings reveal that the growth mechanism involves the solidification of condensed liquid‐phase TMO microdroplets onto the substrate under an oxygen‐rich ambient condition. This enables a continuous process under ambient air conditions, allowing for processing within just a few tens of seconds per sample. Finally, it is confirmed that the method can be extended to the synthesis of various NTMOs and their related compounds.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Rapid, Sensitive Detection of Protein Biomarkers in Minimally‐Processed Blood Products with a Monolithic Sandwich Immunoassay Reagent Unifying Electrochemically‐Driven Multistep Phase Transformations of Rutile TiO2 to Rocksalt Nanograins for Reversible Li+ and Na+ Storage Lyotropic Liquid Crystal Mediated Assembly of Donor Polymers Enhances Efficiency and Stability of Blade‐Coated Organic Solar Cells Ultrafast and Universal Synthetic Route for Nanostructured Transition Metal Oxides Directly Grown on Substrates A Functionalized 3D‐Printed Ti6Al4V “Cell Climbing Frame” Inspired by Marine Sponges to Recruit and Rejuvenate Autologous BMSCs in Osteoporotic Bone Repair
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1