Ignition-proof magnesium alloys with rare earth elements: A novel framework to predict combustion phases, surface morphologies, and hidden features using heating rates
Muhammad Zeeshan Farooq, Yiyong Wu, Mingyi Zheng, Liangxing Lu
{"title":"Ignition-proof magnesium alloys with rare earth elements: A novel framework to predict combustion phases, surface morphologies, and hidden features using heating rates","authors":"Muhammad Zeeshan Farooq, Yiyong Wu, Mingyi Zheng, Liangxing Lu","doi":"10.1016/j.jma.2025.01.014","DOIUrl":null,"url":null,"abstract":"This study presents a proposed interdisciplinary framework for developing ignition-resistant magnesium alloys and analyzing their combustion behavior. It focuses on both commercial AZ31, AZ91, WE43 and formulated Mg-Gd-Y-Zn-Zr alloys with various rare earth elements (REEs) contents. The research integrates experimental methods, heating rate simulations, advanced image processing, and machine learning (ML) techniques to identify key mechanisms that enhance ignition resistance, particularly for aerospace and other industrial applications. A novel alloy composition, Mg-8Gd-6Y-0.6Zn-0.6Zr, demonstrated exceptional non-combustibility in air. The study is systematically to classifies the combustion process into distinct phases and surface morphologies by leveraging supervised and unsupervised learning models based on unseen heating rate features. Advanced image processing techniques reveal dynamic surface morphology changes, including thermal deformation, melting spots, gas bubble formation, and transformations during saturation and post-melting phases, while unsupervised ML models also validate these outstanding predictions of surface morphology features. Additionally, the research highlights the synergistic effects of REEs in forming dense, protective oxide layers, refining microstructures, and delaying ignition. This phase-based analysis provides the combustion behavior of magnesium alloys, which is crucial for evaluating their performance in industrial fire scenarios.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"62 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.01.014","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a proposed interdisciplinary framework for developing ignition-resistant magnesium alloys and analyzing their combustion behavior. It focuses on both commercial AZ31, AZ91, WE43 and formulated Mg-Gd-Y-Zn-Zr alloys with various rare earth elements (REEs) contents. The research integrates experimental methods, heating rate simulations, advanced image processing, and machine learning (ML) techniques to identify key mechanisms that enhance ignition resistance, particularly for aerospace and other industrial applications. A novel alloy composition, Mg-8Gd-6Y-0.6Zn-0.6Zr, demonstrated exceptional non-combustibility in air. The study is systematically to classifies the combustion process into distinct phases and surface morphologies by leveraging supervised and unsupervised learning models based on unseen heating rate features. Advanced image processing techniques reveal dynamic surface morphology changes, including thermal deformation, melting spots, gas bubble formation, and transformations during saturation and post-melting phases, while unsupervised ML models also validate these outstanding predictions of surface morphology features. Additionally, the research highlights the synergistic effects of REEs in forming dense, protective oxide layers, refining microstructures, and delaying ignition. This phase-based analysis provides the combustion behavior of magnesium alloys, which is crucial for evaluating their performance in industrial fire scenarios.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.