{"title":"Modelling dynamic interdependence in nonstationary variances with an application to carbon markets","authors":"Susana Campos-Martins , Cristina Amado","doi":"10.1016/j.jedc.2025.105062","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we propose a multivariate generalisation of the multiplicative decomposition of the volatility within the class of conditional correlation GARCH models. The GARCH variance equations are multiplicatively decomposed into a deterministic nonstationary component describing the long-run movements in volatility and a short-run dynamic component allowing for volatility interactions across markets or assets. The conditional correlations are assumed to be time-invariant in its simplest form or generalised into a flexible dynamic parameterisation. Parameters of the model are estimated equation-by-equation by maximum likelihood applying the maximisation by parts algorithm to the variance equations, and thereafter to the structure of conditional correlations. An empirical application using carbon markets data illustrates the usefulness of the model. Our results suggest that, after modelling the variance equations accordingly, we find evidence that the transmission mechanism of shocks is supported by the presence of dynamic interdependence in variances robust to nonstationarity.</div></div>","PeriodicalId":48314,"journal":{"name":"Journal of Economic Dynamics & Control","volume":"173 ","pages":"Article 105062"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Dynamics & Control","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165188925000284","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we propose a multivariate generalisation of the multiplicative decomposition of the volatility within the class of conditional correlation GARCH models. The GARCH variance equations are multiplicatively decomposed into a deterministic nonstationary component describing the long-run movements in volatility and a short-run dynamic component allowing for volatility interactions across markets or assets. The conditional correlations are assumed to be time-invariant in its simplest form or generalised into a flexible dynamic parameterisation. Parameters of the model are estimated equation-by-equation by maximum likelihood applying the maximisation by parts algorithm to the variance equations, and thereafter to the structure of conditional correlations. An empirical application using carbon markets data illustrates the usefulness of the model. Our results suggest that, after modelling the variance equations accordingly, we find evidence that the transmission mechanism of shocks is supported by the presence of dynamic interdependence in variances robust to nonstationarity.
期刊介绍:
The journal provides an outlet for publication of research concerning all theoretical and empirical aspects of economic dynamics and control as well as the development and use of computational methods in economics and finance. Contributions regarding computational methods may include, but are not restricted to, artificial intelligence, databases, decision support systems, genetic algorithms, modelling languages, neural networks, numerical algorithms for optimization, control and equilibria, parallel computing and qualitative reasoning.