{"title":"Conditional forecasts in large Bayesian VARs with multiple equality and inequality constraints","authors":"Joshua C.C. Chan , Davide Pettenuzzo , Aubrey Poon , Dan Zhu","doi":"10.1016/j.jedc.2025.105061","DOIUrl":null,"url":null,"abstract":"<div><div>Conditional forecasts, i.e. projections of a set of variables of interest on the future paths of some other variables, are used routinely by empirical macroeconomists in a number of applied settings. In spite of this, the existing algorithms used to generate conditional forecasts tend to be very computationally intensive, especially when working with large Vector Autoregressions or when multiple linear equality and inequality constraints are imposed at once. We introduce a novel precision-based sampler that is fast, scales well, and yields conditional forecasts from linear equality and inequality constraints. We show in a simulation study that the proposed method produces forecasts that are identical to those from the existing algorithms but in a fraction of the time. We then illustrate the performance of our method in a large Bayesian Vector Autoregression. Within this setting, we first highlight how we can simultaneously impose a mix of linear equality and inequality constraints on the future trajectories of several key US macroeconomic indicators over a forecast horizon spanning multiple years. Next, we test the benefits of using inequality constraints in an out-of-sample exercise spanning the period between 1995Q1 and 2022Q3 and find that imposing these constraints on the future path of Real GDP leads to significant improvement in point and density forecasts of the large BVAR model.</div></div>","PeriodicalId":48314,"journal":{"name":"Journal of Economic Dynamics & Control","volume":"173 ","pages":"Article 105061"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Dynamics & Control","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165188925000272","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Conditional forecasts, i.e. projections of a set of variables of interest on the future paths of some other variables, are used routinely by empirical macroeconomists in a number of applied settings. In spite of this, the existing algorithms used to generate conditional forecasts tend to be very computationally intensive, especially when working with large Vector Autoregressions or when multiple linear equality and inequality constraints are imposed at once. We introduce a novel precision-based sampler that is fast, scales well, and yields conditional forecasts from linear equality and inequality constraints. We show in a simulation study that the proposed method produces forecasts that are identical to those from the existing algorithms but in a fraction of the time. We then illustrate the performance of our method in a large Bayesian Vector Autoregression. Within this setting, we first highlight how we can simultaneously impose a mix of linear equality and inequality constraints on the future trajectories of several key US macroeconomic indicators over a forecast horizon spanning multiple years. Next, we test the benefits of using inequality constraints in an out-of-sample exercise spanning the period between 1995Q1 and 2022Q3 and find that imposing these constraints on the future path of Real GDP leads to significant improvement in point and density forecasts of the large BVAR model.
期刊介绍:
The journal provides an outlet for publication of research concerning all theoretical and empirical aspects of economic dynamics and control as well as the development and use of computational methods in economics and finance. Contributions regarding computational methods may include, but are not restricted to, artificial intelligence, databases, decision support systems, genetic algorithms, modelling languages, neural networks, numerical algorithms for optimization, control and equilibria, parallel computing and qualitative reasoning.