Prediction of dynamic recrystallization behavior of SAE52100 large section bearing steel based on machine learning

Peiheng Ding, Changqing Shu, Shasha Zhang, Zhaokuan Zhang, Xingshuai Liu, Jicong Zhang, Qian Chen, Shuaipeng Yu, Xiaolin Zhu, Zhengjun Yao
{"title":"Prediction of dynamic recrystallization behavior of SAE52100 large section bearing steel based on machine learning","authors":"Peiheng Ding,&nbsp;Changqing Shu,&nbsp;Shasha Zhang,&nbsp;Zhaokuan Zhang,&nbsp;Xingshuai Liu,&nbsp;Jicong Zhang,&nbsp;Qian Chen,&nbsp;Shuaipeng Yu,&nbsp;Xiaolin Zhu,&nbsp;Zhengjun Yao","doi":"10.1002/mgea.75","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the dynamic recrystallization characteristics of SAE52100 large section bearing steel under hot compression, focusing on both the center and surface. Using data from thermal simulation experiments the physical models were developed. Four machine learning algorithms including support vector regression, k-nearest neighbors, random forest, and extreme gradient boosting were then employed to develop dynamic recrystallization prediction models based on the experimental data and inferred values from the physical model. The results show that the machine learning methods provide a better numerical description of the model, provided these are fed with extensive data. To enhance the scope of application, we obtained data from the dynamic recrystallization models for both the center and surface of SAE52100 steel in the as-cast state, as well as extrapolated values from the literature regarding the hot-rolled condition. When the SHAP method was introduced to reveal the mechanism of the influence of each input feature on the prediction results of the machine learning model, it was found that the test results of the Cr element did not match the theory, mainly because of the small scale of Cr elemental data and the strong dependence on grain size and secondary dendrite spacing.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.75","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the dynamic recrystallization characteristics of SAE52100 large section bearing steel under hot compression, focusing on both the center and surface. Using data from thermal simulation experiments the physical models were developed. Four machine learning algorithms including support vector regression, k-nearest neighbors, random forest, and extreme gradient boosting were then employed to develop dynamic recrystallization prediction models based on the experimental data and inferred values from the physical model. The results show that the machine learning methods provide a better numerical description of the model, provided these are fed with extensive data. To enhance the scope of application, we obtained data from the dynamic recrystallization models for both the center and surface of SAE52100 steel in the as-cast state, as well as extrapolated values from the literature regarding the hot-rolled condition. When the SHAP method was introduced to reveal the mechanism of the influence of each input feature on the prediction results of the machine learning model, it was found that the test results of the Cr element did not match the theory, mainly because of the small scale of Cr elemental data and the strong dependence on grain size and secondary dendrite spacing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cover Image Issue Information High-dimensional Bayesian optimization for metamaterial design Prediction of dynamic recrystallization behavior of SAE52100 large section bearing steel based on machine learning Editorial: Shaping the future of materials science through machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1