High-dimensional Bayesian optimization for metamaterial design

Zhichao Tian, Yang Yang, Sui Zhou, Tian Zhou, Ke Deng, Chunlin Ji, Yejun He, Jun S. Liu
{"title":"High-dimensional Bayesian optimization for metamaterial design","authors":"Zhichao Tian,&nbsp;Yang Yang,&nbsp;Sui Zhou,&nbsp;Tian Zhou,&nbsp;Ke Deng,&nbsp;Chunlin Ji,&nbsp;Yejun He,&nbsp;Jun S. Liu","doi":"10.1002/mgea.79","DOIUrl":null,"url":null,"abstract":"<p>Metamaterial design, encompassing both microstructure topology selection and geometric parameter optimization, constitutes a high-dimensional optimization problem, with computationally expensive and time-consuming design evaluations. Bayesian optimization (BO) offers a promising approach for black-box optimization involved in various material designs, and this work presents several advanced techniques to adapt BO to address the challenges associated with metamaterial design. First, variational autoencoders (VAEs) are employed for efficient dimensionality reduction, mapping complex, high-dimensional metamaterial microstructures into a compact latent space. Second, mutual information maximization is incorporated into the VAE to enhance the quality of the learned latent space, ensuring that the most relevant features for optimization are retained. Third, trust region-based Bayesian optimization (TuRBO) dynamically adjusts local search regions, ensuring stability and convergence in high-dimensional spaces. The proposed techniques are well incorporated with conventional Gaussian processes (GP)-based BO framework. We applied the proposed method for the design of electromagnetic metamaterial microstructures. Experimental results show that we achieve a significantly high probability of finding the ground-truth topology types and their geometric parameters, leading to high accuracy in matching the design target. Moreover, our approach demonstrates significant time efficiency compared with traditional design methods.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.79","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metamaterial design, encompassing both microstructure topology selection and geometric parameter optimization, constitutes a high-dimensional optimization problem, with computationally expensive and time-consuming design evaluations. Bayesian optimization (BO) offers a promising approach for black-box optimization involved in various material designs, and this work presents several advanced techniques to adapt BO to address the challenges associated with metamaterial design. First, variational autoencoders (VAEs) are employed for efficient dimensionality reduction, mapping complex, high-dimensional metamaterial microstructures into a compact latent space. Second, mutual information maximization is incorporated into the VAE to enhance the quality of the learned latent space, ensuring that the most relevant features for optimization are retained. Third, trust region-based Bayesian optimization (TuRBO) dynamically adjusts local search regions, ensuring stability and convergence in high-dimensional spaces. The proposed techniques are well incorporated with conventional Gaussian processes (GP)-based BO framework. We applied the proposed method for the design of electromagnetic metamaterial microstructures. Experimental results show that we achieve a significantly high probability of finding the ground-truth topology types and their geometric parameters, leading to high accuracy in matching the design target. Moreover, our approach demonstrates significant time efficiency compared with traditional design methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cover Image Issue Information High-dimensional Bayesian optimization for metamaterial design Prediction of dynamic recrystallization behavior of SAE52100 large section bearing steel based on machine learning Editorial: Shaping the future of materials science through machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1