Supersaturation mutagenesis reveals adaptive rewiring of essential genes among malaria parasites
IF 44.7 1区 综合性期刊Q1 MULTIDISCIPLINARY SCIENCESSciencePub Date : 2025-02-07
Jenna Oberstaller, Shulin Xu, Deboki Naskar, Min Zhang, Chengqi Wang, Justin Gibbons, Camilla Valente Pires, Matthew Mayho, Thomas D. Otto, Julian C. Rayner, John H. Adams
{"title":"Supersaturation mutagenesis reveals adaptive rewiring of essential genes among malaria parasites","authors":"Jenna Oberstaller, Shulin Xu, Deboki Naskar, Min Zhang, Chengqi Wang, Justin Gibbons, Camilla Valente Pires, Matthew Mayho, Thomas D. Otto, Julian C. Rayner, John H. Adams","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Malaria parasites are highly divergent from model eukaryotes. Large-scale genome engineering methods effective in model organisms are frequently inapplicable, and systematic studies of gene function are few. We generated more than 175,000 transposon insertions in the <i>Plasmodium knowlesi</i> genome, averaging an insertion every 138 base pairs, and used this “supersaturation” mutagenesis to score essentiality for 98% of genes. The density of mutations allowed mapping of putative essential domains within genes, providing a completely new level of genome annotation for any <i>Plasmodium</i> species. Although gene essentiality was largely conserved across <i>P. knowlesi</i>, <i>Plasmodium falciparum</i>, and rodent malaria model <i>Plasmodium berghei</i>, a large number of shared genes are differentially essential, revealing species-specific adaptations. Our results indicated that <i>Plasmodium</i> essential gene evolution was conditionally linked to adaptive rewiring of metabolic networks for different hosts.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6734","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/science.adq7347","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adq7347","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Malaria parasites are highly divergent from model eukaryotes. Large-scale genome engineering methods effective in model organisms are frequently inapplicable, and systematic studies of gene function are few. We generated more than 175,000 transposon insertions in the Plasmodium knowlesi genome, averaging an insertion every 138 base pairs, and used this “supersaturation” mutagenesis to score essentiality for 98% of genes. The density of mutations allowed mapping of putative essential domains within genes, providing a completely new level of genome annotation for any Plasmodium species. Although gene essentiality was largely conserved across P. knowlesi, Plasmodium falciparum, and rodent malaria model Plasmodium berghei, a large number of shared genes are differentially essential, revealing species-specific adaptations. Our results indicated that Plasmodium essential gene evolution was conditionally linked to adaptive rewiring of metabolic networks for different hosts.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.