Konstantin Knaipp, Rupert Kargl, Damjan Makuc, Janez Plavec, Ema Žagar, Karin Stana Kleinschek, Georg Gescheidt
{"title":"Azo-Bridged Dextran: A Photoresponsive Sustainable Material with Photo-Tunable Mechanical Properties.","authors":"Konstantin Knaipp, Rupert Kargl, Damjan Makuc, Janez Plavec, Ema Žagar, Karin Stana Kleinschek, Georg Gescheidt","doi":"10.1021/acs.biomac.4c01508","DOIUrl":null,"url":null,"abstract":"<p><p>We report on the synthesis, characterization, and properties of dextran polymers, which are covalently bridged/cross-linked by azobenzene moieties. The reversible photoactivity of the azo moiety is retained in the polymers, and the kinetics of the <i>E</i>/<i>Z</i> isomerization depend on the dextran/azobenzene ratio. Together with the simple preparation, our approach provides convenient access to photoresponsive sustainable materials. Moreover, based on the water-soluble polymers, we have prepared photoresponsive hydrogels, which soften upon UV irradiation. Our findings are based on spectroscopy (UV/vis, IR, and NMR/DOSY), size exclusion chromatography, and rheology.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01508","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We report on the synthesis, characterization, and properties of dextran polymers, which are covalently bridged/cross-linked by azobenzene moieties. The reversible photoactivity of the azo moiety is retained in the polymers, and the kinetics of the E/Z isomerization depend on the dextran/azobenzene ratio. Together with the simple preparation, our approach provides convenient access to photoresponsive sustainable materials. Moreover, based on the water-soluble polymers, we have prepared photoresponsive hydrogels, which soften upon UV irradiation. Our findings are based on spectroscopy (UV/vis, IR, and NMR/DOSY), size exclusion chromatography, and rheology.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.