3D-Printed Protein-Based Bioplastics with Tunable Mechanical Properties Using Glycerol or Hyperbranched Poly(glycerol)s as Plasticizers.

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomacromolecules Pub Date : 2025-02-07 DOI:10.1021/acs.biomac.4c01497
S Cem Millik, Naroa Sadaba, Shayna L Hilburg, Eva Sanchez-Rexach, Meijing Zhang, Siwei Yu, Alexander F Vass, Lilo D Pozzo, Alshakim Nelson
{"title":"3D-Printed Protein-Based Bioplastics with Tunable Mechanical Properties Using Glycerol or Hyperbranched Poly(glycerol)s as Plasticizers.","authors":"S Cem Millik, Naroa Sadaba, Shayna L Hilburg, Eva Sanchez-Rexach, Meijing Zhang, Siwei Yu, Alexander F Vass, Lilo D Pozzo, Alshakim Nelson","doi":"10.1021/acs.biomac.4c01497","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-based materials can be engineered to derive utility from the structures and functions of the incorporated proteins. Modern methods of protein engineering bring promise of unprecedented control over molecular and network design, which will enable new and improved functionalities in materials that incorporate proteins as functional building blocks. For these advantages to be fully realized, there is a need for robust methods for producing protein-based networks, as well as methods for tuning their mechanical properties. Light-based 3D-printing techniques afford high-resolution fabrication capability with unparalleled design freedom in an inexpensive and decentralized capacity. This work features 3D-printed serum albumin-based bioplastics with mechanical properties modulated through the incorporation of glycerol or hyperbranched poly(glycerol)s (HPGs) as plasticizers. These materials capitalize upon important features of serum albumin, including its low intrinsic viscosity, high aqueous solubility, and relatively low cost. The incorporation of glycerol or HPGs of different sizes resulted in softer and more ductile bioplastics than those obtained natively without additives. These bioplastics showed shape-memory behavior and could be used to fabricate functional objects. These materials are accessible, possess minimal chemical hazards, and can be used for fabricating rigid and strong as well as soft and ductile parts using inexpensive commercial 3D printers.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01497","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein-based materials can be engineered to derive utility from the structures and functions of the incorporated proteins. Modern methods of protein engineering bring promise of unprecedented control over molecular and network design, which will enable new and improved functionalities in materials that incorporate proteins as functional building blocks. For these advantages to be fully realized, there is a need for robust methods for producing protein-based networks, as well as methods for tuning their mechanical properties. Light-based 3D-printing techniques afford high-resolution fabrication capability with unparalleled design freedom in an inexpensive and decentralized capacity. This work features 3D-printed serum albumin-based bioplastics with mechanical properties modulated through the incorporation of glycerol or hyperbranched poly(glycerol)s (HPGs) as plasticizers. These materials capitalize upon important features of serum albumin, including its low intrinsic viscosity, high aqueous solubility, and relatively low cost. The incorporation of glycerol or HPGs of different sizes resulted in softer and more ductile bioplastics than those obtained natively without additives. These bioplastics showed shape-memory behavior and could be used to fabricate functional objects. These materials are accessible, possess minimal chemical hazards, and can be used for fabricating rigid and strong as well as soft and ductile parts using inexpensive commercial 3D printers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
期刊最新文献
Issue Editorial Masthead Issue Publication Information 3D-Printed Protein-Based Bioplastics with Tunable Mechanical Properties Using Glycerol or Hyperbranched Poly(glycerol)s as Plasticizers. Bioresorbable Suture Anchor Clips for Soft Tissue Wound Repair. Multiple Levels of Organization in Amphiphilic Diblock Copolymers Based on Poly(γ-benzyl-l-glutamate) Produced by Aqueous ROPISA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1