Development and validation of an explainable machine learning model for mortality prediction among patients with infected pancreatic necrosis.

IF 9.6 1区 医学 Q1 MEDICINE, GENERAL & INTERNAL EClinicalMedicine Pub Date : 2025-01-22 eCollection Date: 2025-02-01 DOI:10.1016/j.eclinm.2025.103074
Caihong Ning, Hui Ouyang, Jie Xiao, Di Wu, Zefang Sun, Baiqi Liu, Dingcheng Shen, Xiaoyue Hong, Chiayan Lin, Jiarong Li, Lu Chen, Shuai Zhu, Xinying Li, Fada Xia, Gengwen Huang
{"title":"Development and validation of an explainable machine learning model for mortality prediction among patients with infected pancreatic necrosis.","authors":"Caihong Ning, Hui Ouyang, Jie Xiao, Di Wu, Zefang Sun, Baiqi Liu, Dingcheng Shen, Xiaoyue Hong, Chiayan Lin, Jiarong Li, Lu Chen, Shuai Zhu, Xinying Li, Fada Xia, Gengwen Huang","doi":"10.1016/j.eclinm.2025.103074","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Infected pancreatic necrosis (IPN) represents a severe complication of acute pancreatitis, commonly linked with mortality rates ranging from 15% to 35%. However, the present mortality prediction tools for IPN are limited and lack sufficient sensitivity and specificity. This study aims to develop and validate an explainable machine learning (ML) model for death prediction among patients with IPN.</p><p><strong>Methods: </strong>We performed a prospective cohort study of 344 patients with IPN consecutively enrolled from a large Chinese tertiary hospital from January 2011 to January 2023. Ten ML models were developed to predict 90-day mortality in these patients. A benchmarking test, involving nested resampling, automatic hyperparameter tuning and random search techniques, was conducted to select the ML model. Sequential forward selection method was employed to select the optimal feature subset from 31 candidate subsets to simplify the model and maximize predictive performance. The final model was internally validated with the 1000 bootstrap method and externally validated using an independent cohort of 132 patients with IPN retrospectively collected from another Chinese tertiary hospital from January 2018 to January 2023. The SHapley Additive exPlanations (SHAP) method was employed to interpret the model in terms of features importance and features effect. The final model constructed with optimal feature subset was deployed as an interactive web-based Shiny app.</p><p><strong>Findings: </strong>Random survival forest (RSF) model showed the best predictive performance than other 9 ML models (internal validation, C-index = 0.863 [95% CI: 0.854-0.875]; external validation, C-index = 0.857 [95% CI: 0.850-0.865]). Multiple organ failure, Acute Physiology and Chronic Health Examination II (APACHE II) score ≥20, duration of organ failure ≥21 days, bloodstream infection, time from onset to first intervention <30 days, Bedside Index of Severity in Acute Pancreatitis score ≥3, critical acute pancreatitis, age ≥ 50 years, and hemorrhage were 9 most important features associated with mortality. Furthermore, SHAP algorithm revealed insightful nonlinear interactive associations between important predictors and mortality, identifying 9 features pairs with high interaction SHAP value and clinical significance. Two interactive web-based Shiny apps were developed to enhance clinical practicability: https://rsfmodels.shinyapps.io/IPN_app/ for cases where the APACHE II score was available and https://rsfmodels.shinyapps.io/IPNeasy/ for cases where it was not.</p><p><strong>Interpretation: </strong>An explainable ML model for death prediction among IPN patients was feasible and effective, suggesting its superior potential in guiding clinical management and improving patient outcomes. Two publicly accessible web tools generated for the optimized model facilitated its utility in clinical settings.</p><p><strong>Funding: </strong>The Natural Science Foundation of Hunan Province (2023JJ30885), Postdoctoral Fellowship Program of CPSF (GZB20230872), The Youth Science Foundation of Xiangya Hospital (2023Q13), The Project Program of National Clinical Research Center for Geriatric Disorders of Xiangya Hospital (2021LNJJ19).</p>","PeriodicalId":11393,"journal":{"name":"EClinicalMedicine","volume":"80 ","pages":"103074"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795559/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EClinicalMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.eclinm.2025.103074","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Infected pancreatic necrosis (IPN) represents a severe complication of acute pancreatitis, commonly linked with mortality rates ranging from 15% to 35%. However, the present mortality prediction tools for IPN are limited and lack sufficient sensitivity and specificity. This study aims to develop and validate an explainable machine learning (ML) model for death prediction among patients with IPN.

Methods: We performed a prospective cohort study of 344 patients with IPN consecutively enrolled from a large Chinese tertiary hospital from January 2011 to January 2023. Ten ML models were developed to predict 90-day mortality in these patients. A benchmarking test, involving nested resampling, automatic hyperparameter tuning and random search techniques, was conducted to select the ML model. Sequential forward selection method was employed to select the optimal feature subset from 31 candidate subsets to simplify the model and maximize predictive performance. The final model was internally validated with the 1000 bootstrap method and externally validated using an independent cohort of 132 patients with IPN retrospectively collected from another Chinese tertiary hospital from January 2018 to January 2023. The SHapley Additive exPlanations (SHAP) method was employed to interpret the model in terms of features importance and features effect. The final model constructed with optimal feature subset was deployed as an interactive web-based Shiny app.

Findings: Random survival forest (RSF) model showed the best predictive performance than other 9 ML models (internal validation, C-index = 0.863 [95% CI: 0.854-0.875]; external validation, C-index = 0.857 [95% CI: 0.850-0.865]). Multiple organ failure, Acute Physiology and Chronic Health Examination II (APACHE II) score ≥20, duration of organ failure ≥21 days, bloodstream infection, time from onset to first intervention <30 days, Bedside Index of Severity in Acute Pancreatitis score ≥3, critical acute pancreatitis, age ≥ 50 years, and hemorrhage were 9 most important features associated with mortality. Furthermore, SHAP algorithm revealed insightful nonlinear interactive associations between important predictors and mortality, identifying 9 features pairs with high interaction SHAP value and clinical significance. Two interactive web-based Shiny apps were developed to enhance clinical practicability: https://rsfmodels.shinyapps.io/IPN_app/ for cases where the APACHE II score was available and https://rsfmodels.shinyapps.io/IPNeasy/ for cases where it was not.

Interpretation: An explainable ML model for death prediction among IPN patients was feasible and effective, suggesting its superior potential in guiding clinical management and improving patient outcomes. Two publicly accessible web tools generated for the optimized model facilitated its utility in clinical settings.

Funding: The Natural Science Foundation of Hunan Province (2023JJ30885), Postdoctoral Fellowship Program of CPSF (GZB20230872), The Youth Science Foundation of Xiangya Hospital (2023Q13), The Project Program of National Clinical Research Center for Geriatric Disorders of Xiangya Hospital (2021LNJJ19).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
EClinicalMedicine
EClinicalMedicine Medicine-Medicine (all)
CiteScore
18.90
自引率
1.30%
发文量
506
审稿时长
22 days
期刊介绍: eClinicalMedicine is a gold open-access clinical journal designed to support frontline health professionals in addressing the complex and rapid health transitions affecting societies globally. The journal aims to assist practitioners in overcoming healthcare challenges across diverse communities, spanning diagnosis, treatment, prevention, and health promotion. Integrating disciplines from various specialties and life stages, it seeks to enhance health systems as fundamental institutions within societies. With a forward-thinking approach, eClinicalMedicine aims to redefine the future of healthcare.
期刊最新文献
Corrigendum for "The global birth prevalence of clubfoot: a systematic review and meta-analysis". Perinatal mortality and other severe adverse outcomes following planned birth at 39 weeks versus expectant management in low-risk women: a population based cohort study. Monitoring of prostate cancer screening in the European Union: development of key performance indicators through the PRAISE-U project. Development and validation of an explainable machine learning model for mortality prediction among patients with infected pancreatic necrosis. Real-world outcomes of the CROSS regimen in patients with resectable esophageal or gastro-esophageal junction adenocarcinoma: a nationwide cohort study in the Netherlands.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1