Impact of unilateral knee restraint on symmetry adaptation and double-support phase dynamic stability during split-belt walking.

IF 1.7 4区 医学 Q4 NEUROSCIENCES Experimental Brain Research Pub Date : 2025-02-06 DOI:10.1007/s00221-025-07006-x
Keisuke Hirata, Hiroki Hanawa, Taku Miyazawa, Naohiko Kanemura
{"title":"Impact of unilateral knee restraint on symmetry adaptation and double-support phase dynamic stability during split-belt walking.","authors":"Keisuke Hirata, Hiroki Hanawa, Taku Miyazawa, Naohiko Kanemura","doi":"10.1007/s00221-025-07006-x","DOIUrl":null,"url":null,"abstract":"<p><p>The split-belt treadmill task is an effective tool for studying walking adaptation, particularly the symmetry adaptation of spatiotemporal parameters such as step length and double support time. This study aimed to evaluate the relationship between symmetry adaptation of spatiotemporal parameters and dynamic stability during the double-support phase in split-belt walking. We hypothesized that restraining fast-side knee extension, which is necessary for step lengthening during adaptation, would decrease dynamic stability during the double-support phase. Ten able-bodied male participants performed split-belt walking tasks under three conditions: control, fast-side knee restraint, and slow-side knee restraint. Our findings revealed that slow-side knee restraint disrupted symmetry in double support time and significantly decreased stability on the fast side during the early and late adaptation phases. Contrary to our hypothesis, fast-side knee restraint did not have a statistically significant effect on dynamic stability or symmetry. These results suggest that decreased dynamic stability during the double-support phase, particularly due to limitations in the movement of the trailing leg, may hinder the adaptation process. This study highlights the importance of dynamic stability control during the double-support phase for successful walking adaptation. Future studies with larger sample sizes and varying speed conditions are recommended to generalize these findings and develop targeted interventions to improve walking adaptability and dynamic stability.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":"243 3","pages":"61"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-025-07006-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The split-belt treadmill task is an effective tool for studying walking adaptation, particularly the symmetry adaptation of spatiotemporal parameters such as step length and double support time. This study aimed to evaluate the relationship between symmetry adaptation of spatiotemporal parameters and dynamic stability during the double-support phase in split-belt walking. We hypothesized that restraining fast-side knee extension, which is necessary for step lengthening during adaptation, would decrease dynamic stability during the double-support phase. Ten able-bodied male participants performed split-belt walking tasks under three conditions: control, fast-side knee restraint, and slow-side knee restraint. Our findings revealed that slow-side knee restraint disrupted symmetry in double support time and significantly decreased stability on the fast side during the early and late adaptation phases. Contrary to our hypothesis, fast-side knee restraint did not have a statistically significant effect on dynamic stability or symmetry. These results suggest that decreased dynamic stability during the double-support phase, particularly due to limitations in the movement of the trailing leg, may hinder the adaptation process. This study highlights the importance of dynamic stability control during the double-support phase for successful walking adaptation. Future studies with larger sample sizes and varying speed conditions are recommended to generalize these findings and develop targeted interventions to improve walking adaptability and dynamic stability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
228
审稿时长
1 months
期刊介绍: Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.
期刊最新文献
Attention and control of posture: the effects of light touch on the center-of-pressure time series regularity and simple reaction time task. Impact of unilateral knee restraint on symmetry adaptation and double-support phase dynamic stability during split-belt walking. Acute effects of anodal transcranial direct current stimulation on endurance and maximal voluntary contraction in lower limbs: a systematic review and meta-analysis. Correction: Paraxanthine enhances memory and neuroplasticity more than caffeine in rats. Reaction time distribution analysis of bimanual movements with spatial and symbolic cues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1