Ethylene antagonizes ABA and inhibits stomatal closure and chilling tolerance in rice.

IF 5.6 2区 生物学 Q1 PLANT SCIENCES Journal of Experimental Botany Pub Date : 2025-02-06 DOI:10.1093/jxb/eraf052
Shuying Huang, Huanhuan Wang, Shiyan Liu, Shan Lu, Jian Hua, Baohong Zou
{"title":"Ethylene antagonizes ABA and inhibits stomatal closure and chilling tolerance in rice.","authors":"Shuying Huang, Huanhuan Wang, Shiyan Liu, Shan Lu, Jian Hua, Baohong Zou","doi":"10.1093/jxb/eraf052","DOIUrl":null,"url":null,"abstract":"<p><p>Chilling stress restricts the geographical distribution of rice and severely impacts its growth and development, ultimately reducing both yield and quality. The plant hormone ethylene is involved in plant stress responses; however, its role in rice chilling tolerance has not been thoroughly explored. This study reveals that ethylene negatively regulates chilling tolerance in rice by antagonizing the chilling tolerance-promoting effects of abscisic acid (ABA). Treatment with ethylene or its biosynthetic precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), results in a reduced survival rate after chilling and delayed stomatal closure in response to chilling. There are two ethylene signaling-related Raf-like protein kinases, OsCTR1 and OsCTR2, which have overlapping functions in ethylene signaling; their loss-of-function mutants exhibit constitutive ethylene responses. The ctr1 ctr2 double mutant displays lower survival rates and slower stomatal closure under chilling stress compared to the wild type. In contrast, ABA treatment significantly enhances the survival rate of the wild type under chilling stress and promotes stomatal closure in response to chilling. Furthermore, ethylene inhibits the effects of ABA on chilling tolerance and stomatal closure. The ctr1 ctr2 double mutant fails to respond to external ABA treatment regarding stomatal closure and increased survival rate under chilling stress. In conclusion, our findings suggest that ethylene negatively regulates chilling tolerance in rice by inhibiting ABA-induced stomatal closure through the action of OsCTR1 and OsCTR2.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf052","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Chilling stress restricts the geographical distribution of rice and severely impacts its growth and development, ultimately reducing both yield and quality. The plant hormone ethylene is involved in plant stress responses; however, its role in rice chilling tolerance has not been thoroughly explored. This study reveals that ethylene negatively regulates chilling tolerance in rice by antagonizing the chilling tolerance-promoting effects of abscisic acid (ABA). Treatment with ethylene or its biosynthetic precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), results in a reduced survival rate after chilling and delayed stomatal closure in response to chilling. There are two ethylene signaling-related Raf-like protein kinases, OsCTR1 and OsCTR2, which have overlapping functions in ethylene signaling; their loss-of-function mutants exhibit constitutive ethylene responses. The ctr1 ctr2 double mutant displays lower survival rates and slower stomatal closure under chilling stress compared to the wild type. In contrast, ABA treatment significantly enhances the survival rate of the wild type under chilling stress and promotes stomatal closure in response to chilling. Furthermore, ethylene inhibits the effects of ABA on chilling tolerance and stomatal closure. The ctr1 ctr2 double mutant fails to respond to external ABA treatment regarding stomatal closure and increased survival rate under chilling stress. In conclusion, our findings suggest that ethylene negatively regulates chilling tolerance in rice by inhibiting ABA-induced stomatal closure through the action of OsCTR1 and OsCTR2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
期刊最新文献
Jack of all trades: Reactive oxygen species in plant responses to stress combinations and priming-induced stress tolerance. Leaf sheath stomata density is a driver of water use in a grass crop: genetic and physiological evidence on barley. CORONATINE INSENSITIVE 1-mediated repression of immunity-related genes in Arabidopsis roots is overcome upon infection with Verticillium longisporum. Earthworms and arbuscular mycorrhizal fungi improve salt tolerance in maize through symplastic pathways. Gene expression driving ethylene biosynthesis and signaling pathways in ripening tomato fruit; a kinetic modelling approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1