Louisa Ulrich, Johanna Schmitz, Corinna Thurow, Christiane Gatz
{"title":"CORONATINE INSENSITIVE 1-mediated repression of immunity-related genes in Arabidopsis roots is overcome upon infection with Verticillium longisporum.","authors":"Louisa Ulrich, Johanna Schmitz, Corinna Thurow, Christiane Gatz","doi":"10.1093/jxb/eraf056","DOIUrl":null,"url":null,"abstract":"<p><p>Verticillium longisporum is a soil-borne fungal pathogen causing vascular disease predominantly in Brassicaceae. We have reported previously that the receptor of the plant defense hormone jasmonoyl-isoleucine (JA-Ile), CORONATINE INSENSITIVE 1 (COI1), is required in roots for efficient proliferation of the fungus in the shoot implicating a mobile root-borne signal that influences the outcome of the disease in shoots. This susceptibility-promoting COI1 function is independent from JA-Ile. To explore the underlying mechanism we compared the root transcriptome of coi1 with the transcriptomes of the susceptible JA-Ile-deficient allene oxide synthase (aos) mutant and susceptible wild-type (WT) plants. The biggest difference between the transcriptomes of coi1 versus WT and aos was due to 316 immunity-related genes that were constitutively higher expressed in coi1 as compared to the susceptible genotypes. Interfering with the expression of a subgroup of these genes partially suppressed the coi1-mediated tolerance phenotype. We therefore hypothesize that secreted defense compounds encoded by genes constitutively expressed in coi1 are transported to the shoot with the transpiration stream where they accumulate to interfere with fungal growth. We furthermore report that 149 of the 316 COI1-repressed genes are induced in WT and aos upon infection reaching similar levels as in mock-treated coi1. These were not further induced in coi1 upon infection. Thus, the repressive effect of COI1 is either lifted or overridden upon infection with V. longisporum.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf056","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Verticillium longisporum is a soil-borne fungal pathogen causing vascular disease predominantly in Brassicaceae. We have reported previously that the receptor of the plant defense hormone jasmonoyl-isoleucine (JA-Ile), CORONATINE INSENSITIVE 1 (COI1), is required in roots for efficient proliferation of the fungus in the shoot implicating a mobile root-borne signal that influences the outcome of the disease in shoots. This susceptibility-promoting COI1 function is independent from JA-Ile. To explore the underlying mechanism we compared the root transcriptome of coi1 with the transcriptomes of the susceptible JA-Ile-deficient allene oxide synthase (aos) mutant and susceptible wild-type (WT) plants. The biggest difference between the transcriptomes of coi1 versus WT and aos was due to 316 immunity-related genes that were constitutively higher expressed in coi1 as compared to the susceptible genotypes. Interfering with the expression of a subgroup of these genes partially suppressed the coi1-mediated tolerance phenotype. We therefore hypothesize that secreted defense compounds encoded by genes constitutively expressed in coi1 are transported to the shoot with the transpiration stream where they accumulate to interfere with fungal growth. We furthermore report that 149 of the 316 COI1-repressed genes are induced in WT and aos upon infection reaching similar levels as in mock-treated coi1. These were not further induced in coi1 upon infection. Thus, the repressive effect of COI1 is either lifted or overridden upon infection with V. longisporum.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.