Jack of all trades: Reactive oxygen species in plant responses to stress combinations and priming-induced stress tolerance.

IF 5.6 2区 生物学 Q1 PLANT SCIENCES Journal of Experimental Botany Pub Date : 2025-02-17 DOI:10.1093/jxb/eraf065
Sophie Hendrix, Isabeau Vanbuel, Jasmine Colemont, Laura Bos Calderó, Mohamed Amine Hamzaoui, Kris Kunnen, Michiel Huybrechts, Ann Cuypers
{"title":"Jack of all trades: Reactive oxygen species in plant responses to stress combinations and priming-induced stress tolerance.","authors":"Sophie Hendrix, Isabeau Vanbuel, Jasmine Colemont, Laura Bos Calderó, Mohamed Amine Hamzaoui, Kris Kunnen, Michiel Huybrechts, Ann Cuypers","doi":"10.1093/jxb/eraf065","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change is expected to increase the frequency of heat waves, drought periods and flooding events, thereby posing a serious risk to crop productivity and global food security. In order to develop strategies to improve plant growth under adverse environmental conditions, in-depth molecular knowledge on plant stress responses is required. In this context, particular attention should be paid to the involvement of reactive oxygen species (ROS), molecules known for causing oxidative damage, but also indispensable for intra- and intercellular signal transduction required for plant acclimation to a wide variety of stress conditions. As plants often encounter multiple stressors simultaneously and their responses to these conditions can generally not be predicted based on the effects of the individual stress factors, the first part of this review focuses on the involvement of ROS and cellular redox homeostasis in plant responses to combined and multifactorial stress conditions. The second part of this work provides an overview of the role of ROS in priming strategies aimed at improving plant tolerance to climate change-related stress conditions. Finally, approaches to advance our understanding of redox dynamics in plant responses to combined stress and priming are discussed.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf065","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change is expected to increase the frequency of heat waves, drought periods and flooding events, thereby posing a serious risk to crop productivity and global food security. In order to develop strategies to improve plant growth under adverse environmental conditions, in-depth molecular knowledge on plant stress responses is required. In this context, particular attention should be paid to the involvement of reactive oxygen species (ROS), molecules known for causing oxidative damage, but also indispensable for intra- and intercellular signal transduction required for plant acclimation to a wide variety of stress conditions. As plants often encounter multiple stressors simultaneously and their responses to these conditions can generally not be predicted based on the effects of the individual stress factors, the first part of this review focuses on the involvement of ROS and cellular redox homeostasis in plant responses to combined and multifactorial stress conditions. The second part of this work provides an overview of the role of ROS in priming strategies aimed at improving plant tolerance to climate change-related stress conditions. Finally, approaches to advance our understanding of redox dynamics in plant responses to combined stress and priming are discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
期刊最新文献
Ethylene biosynthesis in legumes: gene identification and expression during early symbiotic stages. Jack of all trades: Reactive oxygen species in plant responses to stress combinations and priming-induced stress tolerance. Leaf sheath stomata density is a driver of water use in a grass crop: genetic and physiological evidence on barley. CORONATINE INSENSITIVE 1-mediated repression of immunity-related genes in Arabidopsis roots is overcome upon infection with Verticillium longisporum. Earthworms and arbuscular mycorrhizal fungi improve salt tolerance in maize through symplastic pathways.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1