Felix Wiesner , Hangyu Xu , David Lange , Vinny Gupta , Ian Pope , José L. Torero , Juan P. Hidalgo
{"title":"Large-scale compartment fires to develop a self-extinction design framework for mass timber-Part 2: Results, analysis and design implications","authors":"Felix Wiesner , Hangyu Xu , David Lange , Vinny Gupta , Ian Pope , José L. Torero , Juan P. Hidalgo","doi":"10.1016/j.firesaf.2025.104346","DOIUrl":null,"url":null,"abstract":"<div><div>This paper seeks to provide key fundamental knowledge underpinning the use of self-extinction principles as part of a design framework for buildings with engineered mass timber structures. The results from six compartment fire experiments in a cross-laminated timber (CLT) enclosure with different ratios of exposed timber are presented and analyzed to establish the effects of timber exposure on the dynamics of a fire and on the potential of the fire to self-extinguish. The results show the relevance of four key parameters that need to be considered concurrently when assessing self-extinction in mass timber compartments: (a) the characteristic time for burnout of the movable fuel load, (b) the characteristic time for the occurrence of char fall-off, (c) the characteristic time for the occurrence of encapsulation failure, and (d) the heat exchange within the compartment after consumption of the moveable fuel. Self-extinction was attained only when the characteristic time for the occurrence of char fall-off was longer than the characteristic time for burn-out and the heat exchange after burn-out resulted in a heat flux below a well-defined threshold. The position of the exposed timber surfaces affected the magnitude of the threshold heat flux. If the characteristic time for burn-out was greater than the characteristic time for encapsulation failure, self-extinction was not observed to occur.</div></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":"152 ","pages":"Article 104346"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711225000104","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper seeks to provide key fundamental knowledge underpinning the use of self-extinction principles as part of a design framework for buildings with engineered mass timber structures. The results from six compartment fire experiments in a cross-laminated timber (CLT) enclosure with different ratios of exposed timber are presented and analyzed to establish the effects of timber exposure on the dynamics of a fire and on the potential of the fire to self-extinguish. The results show the relevance of four key parameters that need to be considered concurrently when assessing self-extinction in mass timber compartments: (a) the characteristic time for burnout of the movable fuel load, (b) the characteristic time for the occurrence of char fall-off, (c) the characteristic time for the occurrence of encapsulation failure, and (d) the heat exchange within the compartment after consumption of the moveable fuel. Self-extinction was attained only when the characteristic time for the occurrence of char fall-off was longer than the characteristic time for burn-out and the heat exchange after burn-out resulted in a heat flux below a well-defined threshold. The position of the exposed timber surfaces affected the magnitude of the threshold heat flux. If the characteristic time for burn-out was greater than the characteristic time for encapsulation failure, self-extinction was not observed to occur.
期刊介绍:
Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.