Jian Gao , Xin-yao Wang , Ling-xin Meng , Zhen Yin , Na Ma , Xiao-yao Tan , Peng Zhang
{"title":"A carbon material doped with both porous FeOx and N as an efficient catalyst for oxygen reduction reactions","authors":"Jian Gao , Xin-yao Wang , Ling-xin Meng , Zhen Yin , Na Ma , Xiao-yao Tan , Peng Zhang","doi":"10.1016/S1872-5805(24)60876-0","DOIUrl":null,"url":null,"abstract":"<div><div>To replace precious metal oxygen reduction reaction (ORR) electrocatalysts, many transition metals and N-doped carbon composites have been proposed in the last decade resulting in their rapid development as promising non-precious metal catalysts. We used Ketjenblack carbon as the precursor and mixed it with a polymeric ionic liquid (PIL) of [Hvim]NO<sub>3</sub> and Fe(NO<sub>3</sub>)<sub>3</sub>, which was thermally calcined at 900 °C to produce a porous FeO<sub><em>x</em></sub>, N co-doped carbon material denoted FeO<sub><em>x</em></sub>-N/C. Because the PIL of [Hvim]NO<sub>3</sub> strongly combines with and disperses Fe<sup>3+</sup> ions, and NO<sup>3−</sup> is thermally pyrolyzed to form the porous structure, the FeO<sub><em>x</em></sub>-N/C catalyst has a high electrocatalytic activity for the ORR in both 0.1 mol L<sup>−1</sup> KOH and 0.5 mol L<sup>−1</sup> H<sub>2</sub>SO<sub>4</sub> electrolytes. It was used as the catalyst to assemble a zinc-air battery, which had a peak power density of 185 mW·cm<sup>−2</sup>. Its superior electrocatalytic activity, wide pH range, and easy preparation make FeO<sub><em>x</em></sub>-N/C a promising electrocatalyst for fuel cells and metal-air batteries.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 6","pages":"Pages 1202-1212"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580524608760","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
To replace precious metal oxygen reduction reaction (ORR) electrocatalysts, many transition metals and N-doped carbon composites have been proposed in the last decade resulting in their rapid development as promising non-precious metal catalysts. We used Ketjenblack carbon as the precursor and mixed it with a polymeric ionic liquid (PIL) of [Hvim]NO3 and Fe(NO3)3, which was thermally calcined at 900 °C to produce a porous FeOx, N co-doped carbon material denoted FeOx-N/C. Because the PIL of [Hvim]NO3 strongly combines with and disperses Fe3+ ions, and NO3− is thermally pyrolyzed to form the porous structure, the FeOx-N/C catalyst has a high electrocatalytic activity for the ORR in both 0.1 mol L−1 KOH and 0.5 mol L−1 H2SO4 electrolytes. It was used as the catalyst to assemble a zinc-air battery, which had a peak power density of 185 mW·cm−2. Its superior electrocatalytic activity, wide pH range, and easy preparation make FeOx-N/C a promising electrocatalyst for fuel cells and metal-air batteries.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.