Reduced graphene oxide porous films containing SiC whiskers for constructing multilayer electromagnetic shields

IF 5.7 3区 材料科学 Q2 Materials Science New Carbon Materials Pub Date : 2024-12-01 DOI:10.1016/S1872-5805(24)60855-3
Jing Li, Yi-quan Qi, Shi-xiang Zhao, Han-xun Qiu, Jun-he Yang, Guang-zhi Yang
{"title":"Reduced graphene oxide porous films containing SiC whiskers for constructing multilayer electromagnetic shields","authors":"Jing Li,&nbsp;Yi-quan Qi,&nbsp;Shi-xiang Zhao,&nbsp;Han-xun Qiu,&nbsp;Jun-he Yang,&nbsp;Guang-zhi Yang","doi":"10.1016/S1872-5805(24)60855-3","DOIUrl":null,"url":null,"abstract":"<div><div>Developing lightweight and flexible thin films for electromagnetic interference (EMI) shielding is of great importance. Porous thin films of reduced graphene oxide containing SiC whiskers (SiC@RGO) for EMI shielding were prepared by a two-step reduction of graphene oxide (GO), in which the two steps were chemical reduction by HI and the solid phase microwave irradiation. A significant increase of the film thickness from around 20 to 200 μm was achieved due to the formation of a porous structure by gases released during the 3 s of solid phase microwave irradiation. The total shielding effectiveness (SE<sub><em>T</em></sub>) and the reflective SE (SE<sub><em>R</em></sub>) of the SiC@RGO porous thin films depended on the GO/SiC mass ratio. The highest SE<sub><em>T</em></sub> achieved was 35.6 dB while the SE<sub><em>R</em></sub> was only 2.8 dB, when the GO/SiC mass ratio was 4:1. The addition of SiC whiskers was critical for the multi-reflection, interfacial polarization and dielectric attenuation of EM waves. A multilayer film with a gradient change of SE values was constructed using SiC@RGO porous films and multi-walled carbon nanotubes buckypapers. The highest SE<sub><em>T</em></sub> of the multilayer films reached 75.1 dB with a SE<sub><em>R</em></sub> of 2.7 dB for a film thickness of about 1.5 mm. These porous SiC@RGO thin films should find use in multilayer or sandwich structures for EMI absorption in packaging or lining.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 6","pages":"Pages 1191-1201"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580524608553","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Developing lightweight and flexible thin films for electromagnetic interference (EMI) shielding is of great importance. Porous thin films of reduced graphene oxide containing SiC whiskers (SiC@RGO) for EMI shielding were prepared by a two-step reduction of graphene oxide (GO), in which the two steps were chemical reduction by HI and the solid phase microwave irradiation. A significant increase of the film thickness from around 20 to 200 μm was achieved due to the formation of a porous structure by gases released during the 3 s of solid phase microwave irradiation. The total shielding effectiveness (SET) and the reflective SE (SER) of the SiC@RGO porous thin films depended on the GO/SiC mass ratio. The highest SET achieved was 35.6 dB while the SER was only 2.8 dB, when the GO/SiC mass ratio was 4:1. The addition of SiC whiskers was critical for the multi-reflection, interfacial polarization and dielectric attenuation of EM waves. A multilayer film with a gradient change of SE values was constructed using SiC@RGO porous films and multi-walled carbon nanotubes buckypapers. The highest SET of the multilayer films reached 75.1 dB with a SER of 2.7 dB for a film thickness of about 1.5 mm. These porous SiC@RGO thin films should find use in multilayer or sandwich structures for EMI absorption in packaging or lining.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
期刊最新文献
A carbon material doped with both porous FeOx and N as an efficient catalyst for oxygen reduction reactions Reduced graphene oxide porous films containing SiC whiskers for constructing multilayer electromagnetic shields Electrochemical performance of a symmetric supercapacitor device designed using laser-produced multilayer graphene Fluorescence color tuning of dual-emission carbon quantum dots produced from biomass and their use in Fe3+ and Cu2+ detection Influence of functionalized graphene on the bacterial and fungal diversity of Vicia faba rhizosphere soil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1