Modeling iot traffic patterns: Insights from a statistical analysis of an mtc dataset

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Expert Systems with Applications Pub Date : 2025-02-08 DOI:10.1016/j.eswa.2025.126726
David E. Ruiz-Guirola , Onel L.A. López , Samuel Montejo-Sánchez
{"title":"Modeling iot traffic patterns: Insights from a statistical analysis of an mtc dataset","authors":"David E. Ruiz-Guirola ,&nbsp;Onel L.A. López ,&nbsp;Samuel Montejo-Sánchez","doi":"10.1016/j.eswa.2025.126726","DOIUrl":null,"url":null,"abstract":"<div><div>The Internet-of-Things (IoT) is rapidly expanding, connecting numerous devices and becoming integral to our daily lives. As this occurs, ensuring efficient traffic management becomes crucial. Effective IoT traffic management requires modeling and predicting intricate machine-type communication (MTC) dynamics, for which machine-learning (ML) techniques are certainly appealing. However, obtaining comprehensive and high-quality datasets, along with accessible platforms for reproducing ML-based predictions, continues to impede the research progress. In this paper, we aim to fill this gap by characterizing the Smart Campus MTC dataset provided by the University of Oulu. Specifically, we perform a comprehensive statistical analysis of the MTC traffic utilizing goodness-of-fit tests, including well-established tests such as Kolmogorov–Smirnov, Anderson–Darling, chi-squared and root mean square error. The analysis centers on examining and evaluating three models that accurately represent the two most significant MTC traffic types: periodic updating and event-driven, which are also identified from the dataset. The results demonstrate that the models accurately characterize the traffic patterns. The Poisson point process model exhibits the best fit for event-driven patterns with errors below 11%, while the quasi-periodic model fits accurately the periodic updating traffic with errors below 7%.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"272 ","pages":"Article 126726"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425003483","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet-of-Things (IoT) is rapidly expanding, connecting numerous devices and becoming integral to our daily lives. As this occurs, ensuring efficient traffic management becomes crucial. Effective IoT traffic management requires modeling and predicting intricate machine-type communication (MTC) dynamics, for which machine-learning (ML) techniques are certainly appealing. However, obtaining comprehensive and high-quality datasets, along with accessible platforms for reproducing ML-based predictions, continues to impede the research progress. In this paper, we aim to fill this gap by characterizing the Smart Campus MTC dataset provided by the University of Oulu. Specifically, we perform a comprehensive statistical analysis of the MTC traffic utilizing goodness-of-fit tests, including well-established tests such as Kolmogorov–Smirnov, Anderson–Darling, chi-squared and root mean square error. The analysis centers on examining and evaluating three models that accurately represent the two most significant MTC traffic types: periodic updating and event-driven, which are also identified from the dataset. The results demonstrate that the models accurately characterize the traffic patterns. The Poisson point process model exhibits the best fit for event-driven patterns with errors below 11%, while the quasi-periodic model fits accurately the periodic updating traffic with errors below 7%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
期刊最新文献
A comprehensive ATM security framework for detecting abnormal human activity via granger causality-inspired graph neural network optimized with eagle-strategy supply-demand optimization Editorial Board Multi-level and multi-scale cross attention network of wavelet packet transform for supersonic inlet unstart prediction Modeling iot traffic patterns: Insights from a statistical analysis of an mtc dataset Enhanced industrial heat load forecasting in district networks via a multi-scale fusion ensemble deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1