David E. Ruiz-Guirola , Onel L.A. López , Samuel Montejo-Sánchez
{"title":"Modeling iot traffic patterns: Insights from a statistical analysis of an mtc dataset","authors":"David E. Ruiz-Guirola , Onel L.A. López , Samuel Montejo-Sánchez","doi":"10.1016/j.eswa.2025.126726","DOIUrl":null,"url":null,"abstract":"<div><div>The Internet-of-Things (IoT) is rapidly expanding, connecting numerous devices and becoming integral to our daily lives. As this occurs, ensuring efficient traffic management becomes crucial. Effective IoT traffic management requires modeling and predicting intricate machine-type communication (MTC) dynamics, for which machine-learning (ML) techniques are certainly appealing. However, obtaining comprehensive and high-quality datasets, along with accessible platforms for reproducing ML-based predictions, continues to impede the research progress. In this paper, we aim to fill this gap by characterizing the Smart Campus MTC dataset provided by the University of Oulu. Specifically, we perform a comprehensive statistical analysis of the MTC traffic utilizing goodness-of-fit tests, including well-established tests such as Kolmogorov–Smirnov, Anderson–Darling, chi-squared and root mean square error. The analysis centers on examining and evaluating three models that accurately represent the two most significant MTC traffic types: periodic updating and event-driven, which are also identified from the dataset. The results demonstrate that the models accurately characterize the traffic patterns. The Poisson point process model exhibits the best fit for event-driven patterns with errors below 11%, while the quasi-periodic model fits accurately the periodic updating traffic with errors below 7%.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"272 ","pages":"Article 126726"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425003483","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet-of-Things (IoT) is rapidly expanding, connecting numerous devices and becoming integral to our daily lives. As this occurs, ensuring efficient traffic management becomes crucial. Effective IoT traffic management requires modeling and predicting intricate machine-type communication (MTC) dynamics, for which machine-learning (ML) techniques are certainly appealing. However, obtaining comprehensive and high-quality datasets, along with accessible platforms for reproducing ML-based predictions, continues to impede the research progress. In this paper, we aim to fill this gap by characterizing the Smart Campus MTC dataset provided by the University of Oulu. Specifically, we perform a comprehensive statistical analysis of the MTC traffic utilizing goodness-of-fit tests, including well-established tests such as Kolmogorov–Smirnov, Anderson–Darling, chi-squared and root mean square error. The analysis centers on examining and evaluating three models that accurately represent the two most significant MTC traffic types: periodic updating and event-driven, which are also identified from the dataset. The results demonstrate that the models accurately characterize the traffic patterns. The Poisson point process model exhibits the best fit for event-driven patterns with errors below 11%, while the quasi-periodic model fits accurately the periodic updating traffic with errors below 7%.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.