Zhiqiang Chen , Yu Yang , Chundi Jiang , Yi Chen , Hao Yu , Chunguang Zhou , Chuan Li
{"title":"Enhanced industrial heat load forecasting in district networks via a multi-scale fusion ensemble deep learning","authors":"Zhiqiang Chen , Yu Yang , Chundi Jiang , Yi Chen , Hao Yu , Chunguang Zhou , Chuan Li","doi":"10.1016/j.eswa.2025.126783","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate heating load prediction is vital for optimizing the operation of thermal systems, improving energy utilization efficiency, reducing operational costs, enhancing user satisfaction, and promoting the use of renewable energy. To facilitate short-term prediction of heat consumption in industrial areas for practical applications, a multi-scale fusion ensemble model is proposed to address the issue of pressure balance in heating networks. Specifically, (1) Hierarchical Decomposition Approach: To overcome the limitation of relying solely on historical heat load data, a hierarchical decomposition mode is designed by combining Naïve Decomposition, Empirical Mode Decomposition, and Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise. This approach deeply explores the nonlinear characteristics of the heat load. (2) Integrated Heat Load Prediction Framework: An integrated prediction framework based on neural networks—including Back Propagation Networks, Recurrent Neural Networks, Long Short-Term Memory Networks, and Gated Recurrent Unit Networks is constructed. For each component, the optimal prediction model is adaptively selected, and the predicted results are fused using weighted averages. The proposed scheme was applied to 24-hour ahead heating load prediction for four regions of a thermal power company in Quzhou City, Zhejiang Province. The coefficients of determination R<sup>2</sup> achieved for the four regions were 0.8646, 0.8707, 0.8509, and 0.9422, respectively, with Mean Absolute Percentage Errors reaching 10.18%, 3.93%, 2.78%, and 2.31%. Compared with seven classical prediction models, as well as Transformer and its variants, the proposed model outperforms them across five performance indicators and demonstrates strong generalization ability.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"272 ","pages":"Article 126783"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425004051","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate heating load prediction is vital for optimizing the operation of thermal systems, improving energy utilization efficiency, reducing operational costs, enhancing user satisfaction, and promoting the use of renewable energy. To facilitate short-term prediction of heat consumption in industrial areas for practical applications, a multi-scale fusion ensemble model is proposed to address the issue of pressure balance in heating networks. Specifically, (1) Hierarchical Decomposition Approach: To overcome the limitation of relying solely on historical heat load data, a hierarchical decomposition mode is designed by combining Naïve Decomposition, Empirical Mode Decomposition, and Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise. This approach deeply explores the nonlinear characteristics of the heat load. (2) Integrated Heat Load Prediction Framework: An integrated prediction framework based on neural networks—including Back Propagation Networks, Recurrent Neural Networks, Long Short-Term Memory Networks, and Gated Recurrent Unit Networks is constructed. For each component, the optimal prediction model is adaptively selected, and the predicted results are fused using weighted averages. The proposed scheme was applied to 24-hour ahead heating load prediction for four regions of a thermal power company in Quzhou City, Zhejiang Province. The coefficients of determination R2 achieved for the four regions were 0.8646, 0.8707, 0.8509, and 0.9422, respectively, with Mean Absolute Percentage Errors reaching 10.18%, 3.93%, 2.78%, and 2.31%. Compared with seven classical prediction models, as well as Transformer and its variants, the proposed model outperforms them across five performance indicators and demonstrates strong generalization ability.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.