Enhanced industrial heat load forecasting in district networks via a multi-scale fusion ensemble deep learning

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Expert Systems with Applications Pub Date : 2025-02-08 DOI:10.1016/j.eswa.2025.126783
Zhiqiang Chen , Yu Yang , Chundi Jiang , Yi Chen , Hao Yu , Chunguang Zhou , Chuan Li
{"title":"Enhanced industrial heat load forecasting in district networks via a multi-scale fusion ensemble deep learning","authors":"Zhiqiang Chen ,&nbsp;Yu Yang ,&nbsp;Chundi Jiang ,&nbsp;Yi Chen ,&nbsp;Hao Yu ,&nbsp;Chunguang Zhou ,&nbsp;Chuan Li","doi":"10.1016/j.eswa.2025.126783","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate heating load prediction is vital for optimizing the operation of thermal systems, improving energy utilization efficiency, reducing operational costs, enhancing user satisfaction, and promoting the use of renewable energy. To facilitate short-term prediction of heat consumption in industrial areas for practical applications, a multi-scale fusion ensemble model is proposed to address the issue of pressure balance in heating networks. Specifically, (1) Hierarchical Decomposition Approach: To overcome the limitation of relying solely on historical heat load data, a hierarchical decomposition mode is designed by combining Naïve Decomposition, Empirical Mode Decomposition, and Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise. This approach deeply explores the nonlinear characteristics of the heat load. (2) Integrated Heat Load Prediction Framework: An integrated prediction framework based on neural networks—including Back Propagation Networks, Recurrent Neural Networks, Long Short-Term Memory Networks, and Gated Recurrent Unit Networks is constructed. For each component, the optimal prediction model is adaptively selected, and the predicted results are fused using weighted averages. The proposed scheme was applied to 24-hour ahead heating load prediction for four regions of a thermal power company in Quzhou City, Zhejiang Province. The coefficients of determination R<sup>2</sup> achieved for the four regions were 0.8646, 0.8707, 0.8509, and 0.9422, respectively, with Mean Absolute Percentage Errors reaching 10.18%, 3.93%, 2.78%, and 2.31%. Compared with seven classical prediction models, as well as Transformer and its variants, the proposed model outperforms them across five performance indicators and demonstrates strong generalization ability.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"272 ","pages":"Article 126783"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425004051","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate heating load prediction is vital for optimizing the operation of thermal systems, improving energy utilization efficiency, reducing operational costs, enhancing user satisfaction, and promoting the use of renewable energy. To facilitate short-term prediction of heat consumption in industrial areas for practical applications, a multi-scale fusion ensemble model is proposed to address the issue of pressure balance in heating networks. Specifically, (1) Hierarchical Decomposition Approach: To overcome the limitation of relying solely on historical heat load data, a hierarchical decomposition mode is designed by combining Naïve Decomposition, Empirical Mode Decomposition, and Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise. This approach deeply explores the nonlinear characteristics of the heat load. (2) Integrated Heat Load Prediction Framework: An integrated prediction framework based on neural networks—including Back Propagation Networks, Recurrent Neural Networks, Long Short-Term Memory Networks, and Gated Recurrent Unit Networks is constructed. For each component, the optimal prediction model is adaptively selected, and the predicted results are fused using weighted averages. The proposed scheme was applied to 24-hour ahead heating load prediction for four regions of a thermal power company in Quzhou City, Zhejiang Province. The coefficients of determination R2 achieved for the four regions were 0.8646, 0.8707, 0.8509, and 0.9422, respectively, with Mean Absolute Percentage Errors reaching 10.18%, 3.93%, 2.78%, and 2.31%. Compared with seven classical prediction models, as well as Transformer and its variants, the proposed model outperforms them across five performance indicators and demonstrates strong generalization ability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
期刊最新文献
A comprehensive ATM security framework for detecting abnormal human activity via granger causality-inspired graph neural network optimized with eagle-strategy supply-demand optimization Editorial Board Multi-level and multi-scale cross attention network of wavelet packet transform for supersonic inlet unstart prediction Modeling iot traffic patterns: Insights from a statistical analysis of an mtc dataset Enhanced industrial heat load forecasting in district networks via a multi-scale fusion ensemble deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1