Biocompatible and size-dependent melanin-like nanocapsules for efficient therapy in hyperoxia-induced acute lung injury

IF 12.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL Biomaterials Pub Date : 2025-02-05 DOI:10.1016/j.biomaterials.2025.123169
Yahong Han , Jie Dong , Liyan Zhang , Tao Yue , Wenjing Zhao , Caifang Gao , Jinghua Sun , Ruiping Zhang
{"title":"Biocompatible and size-dependent melanin-like nanocapsules for efficient therapy in hyperoxia-induced acute lung injury","authors":"Yahong Han ,&nbsp;Jie Dong ,&nbsp;Liyan Zhang ,&nbsp;Tao Yue ,&nbsp;Wenjing Zhao ,&nbsp;Caifang Gao ,&nbsp;Jinghua Sun ,&nbsp;Ruiping Zhang","doi":"10.1016/j.biomaterials.2025.123169","DOIUrl":null,"url":null,"abstract":"<div><div>Hyperoxia-induced acute lung injury (HALI) is a serious pulmonary disease, and its therapeutic effect is greatly limited by disordered oxidative stress microenvironment. Safe and efficient antioxidant-immunomodulatory therapy may be a promising strategy to maintain redox homeostasis in HALI. Herein, a novel therapeutic strategy (PCT) composed size-dependent melanin-like polydopamine nanocapsules (PC) and IKK-2 inhibitor TPCA-1 is developed to alleviate HALI. By flexibly tuning the size of nanocapsules, the lung-to-liver ratio could be finely optimized, which facilitates to delivery adequate dose of TPCA-1 to pulmonary lesions and improve the bioavailability. Notably, these nanocapsules exhibit superior biosafety <em>in vitro</em> and <em>in vivo</em>. The selected PCT sharply scavenges intracellular reactive oxygen species (ROS) and protects mitochondrial function, subsequently reprogramming the repolarization of macrophages. Moreover, injection of PCT eliminates elevated ROS and oxidative stress products against the redox imbalance in HALI mice. Mechanistically, benefiting from much ROS depletion, PCT plays a positive role in inhibiting immune cell infiltration, down-regulating multiple inflammatory factors, and promoting macrophage polarization toward anti-inflammatory M2 phenotype through activating the Keap-1/Nrf2 pathway, thus remarkably breaking the vicious cycle of inflammation and oxidative stress in HALI. Overall, these findings provide a secure and effective therapy combining antioxidation and immunoregulation for HALI and other pulmonary diseases.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"318 ","pages":"Article 123169"},"PeriodicalIF":12.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225000882","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperoxia-induced acute lung injury (HALI) is a serious pulmonary disease, and its therapeutic effect is greatly limited by disordered oxidative stress microenvironment. Safe and efficient antioxidant-immunomodulatory therapy may be a promising strategy to maintain redox homeostasis in HALI. Herein, a novel therapeutic strategy (PCT) composed size-dependent melanin-like polydopamine nanocapsules (PC) and IKK-2 inhibitor TPCA-1 is developed to alleviate HALI. By flexibly tuning the size of nanocapsules, the lung-to-liver ratio could be finely optimized, which facilitates to delivery adequate dose of TPCA-1 to pulmonary lesions and improve the bioavailability. Notably, these nanocapsules exhibit superior biosafety in vitro and in vivo. The selected PCT sharply scavenges intracellular reactive oxygen species (ROS) and protects mitochondrial function, subsequently reprogramming the repolarization of macrophages. Moreover, injection of PCT eliminates elevated ROS and oxidative stress products against the redox imbalance in HALI mice. Mechanistically, benefiting from much ROS depletion, PCT plays a positive role in inhibiting immune cell infiltration, down-regulating multiple inflammatory factors, and promoting macrophage polarization toward anti-inflammatory M2 phenotype through activating the Keap-1/Nrf2 pathway, thus remarkably breaking the vicious cycle of inflammation and oxidative stress in HALI. Overall, these findings provide a secure and effective therapy combining antioxidation and immunoregulation for HALI and other pulmonary diseases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomaterials
Biomaterials 工程技术-材料科学:生物材料
CiteScore
26.00
自引率
2.90%
发文量
565
审稿时长
46 days
期刊介绍: Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.
期刊最新文献
Biocompatible and size-dependent melanin-like nanocapsules for efficient therapy in hyperoxia-induced acute lung injury Glycoengineered stem cell-derived extracellular vesicles for targeted therapy of acute kidney injury Regulation of mitochondrial apoptosis via siRNA-loaded metallo-alginate hydrogels: A localized and synergistic antitumor therapy Inflammation-targeted delivery of probiotics for alleviation of colitis and associated cognitive disorders through improved vitality and colonization Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1