Inflammation-targeted delivery of probiotics for alleviation of colitis and associated cognitive disorders through improved vitality and colonization

IF 12.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL Biomaterials Pub Date : 2025-02-01 DOI:10.1016/j.biomaterials.2025.123163
Yi Chen , Mingju Shui , Hongyi Li , Miao Guo , Qin Yuan , Wei Hao , Tao Wang , Hefeng Zhou , Zhejie Chen , Shengpeng Wang
{"title":"Inflammation-targeted delivery of probiotics for alleviation of colitis and associated cognitive disorders through improved vitality and colonization","authors":"Yi Chen ,&nbsp;Mingju Shui ,&nbsp;Hongyi Li ,&nbsp;Miao Guo ,&nbsp;Qin Yuan ,&nbsp;Wei Hao ,&nbsp;Tao Wang ,&nbsp;Hefeng Zhou ,&nbsp;Zhejie Chen ,&nbsp;Shengpeng Wang","doi":"10.1016/j.biomaterials.2025.123163","DOIUrl":null,"url":null,"abstract":"<div><div>Oral probiotic biotherapies hold significant promise for addressing intestinal inflammatory disorders. Nonetheless, due to the challenging pathological microenvironment of the gastrointestinal tract, it is difficult to achieve deliver probiotics in an inflammation-targeted manner while improving their intestinal colonization and minimizing the impact of gastrointestinal environment on their vitality. To address this, an innovative probiotics oral delivery system (EcN-Apt@HG) against ulcerative colitis (UC) was developed by conjugating IL-6 aptamer to the surface of EcN and subsequently encapsulating the probiotics in a hydrogel consisting of aldehyde-functionalized chondroitin sulfate (CS) and Poly(amidoamine) (PAMAM). As expected, the encapsulated EcN demonstrated resistance to gastrointestinal conditions, and the colonization duration of probiotics in the colon was enhanced <em>via</em> the preferential adhesion effect of IL-6 aptamer on the inflammatory site. The EcN-Apt@HG system restored the damaged mucosal layer, suppressed hyperactive immune responses, and reshaped the dysbiosis of intestinal microflora, thereby synergistically alleviating dextran sulfate sodium (DSS)-induced colitis. Notably, EcN-Apt@HG significantly alleviated depression-like behaviors and cognitive impairment in colitis mice through gut-brain axis interaction. This approach provides a simple and promising strategy for inflammation-targeted delivery of probiotics to the intestine and shows great potential for UC therapy and associated cognitive disorders.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"318 ","pages":"Article 123163"},"PeriodicalIF":12.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225000821","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Oral probiotic biotherapies hold significant promise for addressing intestinal inflammatory disorders. Nonetheless, due to the challenging pathological microenvironment of the gastrointestinal tract, it is difficult to achieve deliver probiotics in an inflammation-targeted manner while improving their intestinal colonization and minimizing the impact of gastrointestinal environment on their vitality. To address this, an innovative probiotics oral delivery system (EcN-Apt@HG) against ulcerative colitis (UC) was developed by conjugating IL-6 aptamer to the surface of EcN and subsequently encapsulating the probiotics in a hydrogel consisting of aldehyde-functionalized chondroitin sulfate (CS) and Poly(amidoamine) (PAMAM). As expected, the encapsulated EcN demonstrated resistance to gastrointestinal conditions, and the colonization duration of probiotics in the colon was enhanced via the preferential adhesion effect of IL-6 aptamer on the inflammatory site. The EcN-Apt@HG system restored the damaged mucosal layer, suppressed hyperactive immune responses, and reshaped the dysbiosis of intestinal microflora, thereby synergistically alleviating dextran sulfate sodium (DSS)-induced colitis. Notably, EcN-Apt@HG significantly alleviated depression-like behaviors and cognitive impairment in colitis mice through gut-brain axis interaction. This approach provides a simple and promising strategy for inflammation-targeted delivery of probiotics to the intestine and shows great potential for UC therapy and associated cognitive disorders.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomaterials
Biomaterials 工程技术-材料科学:生物材料
CiteScore
26.00
自引率
2.90%
发文量
565
审稿时长
46 days
期刊介绍: Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.
期刊最新文献
Biocompatible and size-dependent melanin-like nanocapsules for efficient therapy in hyperoxia-induced acute lung injury Glycoengineered stem cell-derived extracellular vesicles for targeted therapy of acute kidney injury Regulation of mitochondrial apoptosis via siRNA-loaded metallo-alginate hydrogels: A localized and synergistic antitumor therapy Inflammation-targeted delivery of probiotics for alleviation of colitis and associated cognitive disorders through improved vitality and colonization Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1