Haoqin Yang , Yuandong Liu , Longbo Zhang , Hongzhen Cai , Kai Che , Linlin Xing
{"title":"Patient deep spatio-temporal encoding and medication substructure mapping for safe medication recommendation","authors":"Haoqin Yang , Yuandong Liu , Longbo Zhang , Hongzhen Cai , Kai Che , Linlin Xing","doi":"10.1016/j.jbi.2025.104785","DOIUrl":null,"url":null,"abstract":"<div><div>Medication recommendations are designed to provide physicians and patients with personalized, accurate and safe medication choices to maximize patient outcomes. Although significant progress has been made in related research, three major challenges remain: inadequate modeling of patients’ multidimensional and time-series information, insufficient representation of medication substructures, and poor balance between model accuracy and drug-drug interactions. To address these issues , a safe medication recommendation model SDRBT based on patient deep spatio-temporal encoding and medication substructure mapping is proposed in this paper. SDRBT has developed a patient deep temporal and spatial coding module, which combines symptom information, disease diagnosis information, and treatment information from the patient’s electronic health record data. It innovatively utilizes the Block Recurrent Transformer to model longitudinal temporal information of patients in different dimensions to obtain the horizontal representation of the patient’s current visit. A dual-domain mapping module for medication substructures is designed to perform global and local mapping of medications, fully learning and aggregating medication substructure representations. Finally, a PID LOSS control unit was designed, in which we studied a drug interaction control module based on the similarity calculation between the electronic health map and the drug interaction graph. This module ensures the safety of the recommended medication combination effectively improved the recommendation efficiency and reduced the model training time. Experiments on the public MIMIC-III dataset demonstrate SDRBT’s superior accuracy in medication recommendation.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"163 ","pages":"Article 104785"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425000140","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Medication recommendations are designed to provide physicians and patients with personalized, accurate and safe medication choices to maximize patient outcomes. Although significant progress has been made in related research, three major challenges remain: inadequate modeling of patients’ multidimensional and time-series information, insufficient representation of medication substructures, and poor balance between model accuracy and drug-drug interactions. To address these issues , a safe medication recommendation model SDRBT based on patient deep spatio-temporal encoding and medication substructure mapping is proposed in this paper. SDRBT has developed a patient deep temporal and spatial coding module, which combines symptom information, disease diagnosis information, and treatment information from the patient’s electronic health record data. It innovatively utilizes the Block Recurrent Transformer to model longitudinal temporal information of patients in different dimensions to obtain the horizontal representation of the patient’s current visit. A dual-domain mapping module for medication substructures is designed to perform global and local mapping of medications, fully learning and aggregating medication substructure representations. Finally, a PID LOSS control unit was designed, in which we studied a drug interaction control module based on the similarity calculation between the electronic health map and the drug interaction graph. This module ensures the safety of the recommended medication combination effectively improved the recommendation efficiency and reduced the model training time. Experiments on the public MIMIC-III dataset demonstrate SDRBT’s superior accuracy in medication recommendation.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.