Çerağ Oğuztüzün , Zhenxiang Gao , Hui Li , Rong Xu
{"title":"Precision Drug Repurposing (PDR): Patient-level modeling and prediction combining foundational knowledge graph with biobank data","authors":"Çerağ Oğuztüzün , Zhenxiang Gao , Hui Li , Rong Xu","doi":"10.1016/j.jbi.2025.104786","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective:</h3><div>Drug repurposing accelerates therapeutic development by finding new indications for approved drugs. However, accounting for individual patient differences is challenging. This study introduces a Precision Drug Repurposing (PDR) framework at single-patient resolution, integrating individual-level data with a foundational biomedical knowledge graph to enable personalized drug discovery.</div></div><div><h3>Methods:</h3><div>We developed a framework integrating patient-specific data from the UK Biobank (Polygenic Risk Scores, biomarker expressions, and medical history) with a comprehensive biomedical knowledge graph (61,146 entities, 1,246,726 relations). Using Alzheimer’s Disease as a case study, we compared three diverse patient-specific models with a foundational model through standard link prediction metrics. We evaluated top predicted candidate drugs using patient medication history and literature review.</div></div><div><h3>Results:</h3><div>Our framework maintained the robust prediction capabilities of the foundational model. The integration of patient data, particularly Polygenic Risk Scores (PRS), significantly influenced drug prioritization (Cohen’s d = 1.05 for scoring differences). Ablation studies demonstrated PRS’s crucial role, with effect size decreasing to 0.77 upon removal. Each patient model identified novel drug candidates that were missed by the foundational model but showed therapeutic relevance when evaluated using patient’s own medication history. These candidates were further supported by aligned literature evidence with the patient-level genetic risk profiles based on PRS.</div></div><div><h3>Conclusion:</h3><div>This exploratory study demonstrates a promising approach to precision drug repurposing by integrating patient-specific data with a foundational knowledge graph.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"163 ","pages":"Article 104786"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425000152","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective:
Drug repurposing accelerates therapeutic development by finding new indications for approved drugs. However, accounting for individual patient differences is challenging. This study introduces a Precision Drug Repurposing (PDR) framework at single-patient resolution, integrating individual-level data with a foundational biomedical knowledge graph to enable personalized drug discovery.
Methods:
We developed a framework integrating patient-specific data from the UK Biobank (Polygenic Risk Scores, biomarker expressions, and medical history) with a comprehensive biomedical knowledge graph (61,146 entities, 1,246,726 relations). Using Alzheimer’s Disease as a case study, we compared three diverse patient-specific models with a foundational model through standard link prediction metrics. We evaluated top predicted candidate drugs using patient medication history and literature review.
Results:
Our framework maintained the robust prediction capabilities of the foundational model. The integration of patient data, particularly Polygenic Risk Scores (PRS), significantly influenced drug prioritization (Cohen’s d = 1.05 for scoring differences). Ablation studies demonstrated PRS’s crucial role, with effect size decreasing to 0.77 upon removal. Each patient model identified novel drug candidates that were missed by the foundational model but showed therapeutic relevance when evaluated using patient’s own medication history. These candidates were further supported by aligned literature evidence with the patient-level genetic risk profiles based on PRS.
Conclusion:
This exploratory study demonstrates a promising approach to precision drug repurposing by integrating patient-specific data with a foundational knowledge graph.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.