Enhanced heart failure mortality prediction through model-independent hybrid feature selection and explainable machine learning

IF 4 2区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Biomedical Informatics Pub Date : 2025-02-15 DOI:10.1016/j.jbi.2025.104800
Georgios Petmezas , Vasileios E. Papageorgiou , Vassilios Vassilikos , Efstathios Pagourelias , Dimitrios Tachmatzidis , George Tsaklidis , Aggelos K. Katsaggelos , Nicos Maglaveras
{"title":"Enhanced heart failure mortality prediction through model-independent hybrid feature selection and explainable machine learning","authors":"Georgios Petmezas ,&nbsp;Vasileios E. Papageorgiou ,&nbsp;Vassilios Vassilikos ,&nbsp;Efstathios Pagourelias ,&nbsp;Dimitrios Tachmatzidis ,&nbsp;George Tsaklidis ,&nbsp;Aggelos K. Katsaggelos ,&nbsp;Nicos Maglaveras","doi":"10.1016/j.jbi.2025.104800","DOIUrl":null,"url":null,"abstract":"<div><div>Heart failure (HF) remains a significant public health challenge with high mortality rates. Machine learning (ML) techniques offer a promising approach to predict HF mortality, potentially improving clinical outcomes. However, the effectiveness of these techniques heavily depends on the quality and relevance of the features used. This study introduces a novel hybrid feature selection methodology that combines Extremely Randomized Trees (Extra-Trees) and non-linear correlation measures to enhance 1-year all-cause mortality prediction in HF patients using echocardiographic and key demographic data. Unlike existing feature selection methods that are often tied to specific ML models and produce inconsistent feature sets across different algorithms, our proposed approach is model-independent, ensuring robustness and generalizability. Moreover, the optimal number of predictive features is identified through loss graph inspection, leading to a compact and highly informative subset of seven features. We trained and evaluated seven widely-used ML models on both the full feature set and the selected subset, finding that most models maintained or improved their predictive performance despite an 80% reduction in features. Model interpretability was enhanced using SHapley Additive exPlanations (SHAP), allowing for a detailed examination of how individual features influence predictions. To further assess its effectiveness, we compared our methodology against widely known feature selection techniques across all seven ML models. The results underscore the superiority of our proposed feature set in accurately predicting HF mortality over conventional methods, offering new opportunities for personalized management strategies based on a streamlined and explainable feature subset.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"163 ","pages":"Article 104800"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425000292","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Heart failure (HF) remains a significant public health challenge with high mortality rates. Machine learning (ML) techniques offer a promising approach to predict HF mortality, potentially improving clinical outcomes. However, the effectiveness of these techniques heavily depends on the quality and relevance of the features used. This study introduces a novel hybrid feature selection methodology that combines Extremely Randomized Trees (Extra-Trees) and non-linear correlation measures to enhance 1-year all-cause mortality prediction in HF patients using echocardiographic and key demographic data. Unlike existing feature selection methods that are often tied to specific ML models and produce inconsistent feature sets across different algorithms, our proposed approach is model-independent, ensuring robustness and generalizability. Moreover, the optimal number of predictive features is identified through loss graph inspection, leading to a compact and highly informative subset of seven features. We trained and evaluated seven widely-used ML models on both the full feature set and the selected subset, finding that most models maintained or improved their predictive performance despite an 80% reduction in features. Model interpretability was enhanced using SHapley Additive exPlanations (SHAP), allowing for a detailed examination of how individual features influence predictions. To further assess its effectiveness, we compared our methodology against widely known feature selection techniques across all seven ML models. The results underscore the superiority of our proposed feature set in accurately predicting HF mortality over conventional methods, offering new opportunities for personalized management strategies based on a streamlined and explainable feature subset.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomedical Informatics
Journal of Biomedical Informatics 医学-计算机:跨学科应用
CiteScore
8.90
自引率
6.70%
发文量
243
审稿时长
32 days
期刊介绍: The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.
期刊最新文献
Enhanced heart failure mortality prediction through model-independent hybrid feature selection and explainable machine learning Developing libraries of semantically-augmented graphics as visual standards for biomedical information systems. Adaptable graph neural networks design to support generalizability for clinical event prediction. Precision Drug Repurposing (PDR): Patient-level modeling and prediction combining foundational knowledge graph with biobank data Enhancing clinical data warehousing with provenance data to support longitudinal analyses and large file management: The gitOmmix approach for genomic and image data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1