YieldFCP: Enhancing Reaction Yield Prediction via Fine-grained Cross-modal Pre-training

Runhan Shi, Gufeng Yu, Letian Chen, Yang Yang
{"title":"YieldFCP: Enhancing Reaction Yield Prediction via Fine-grained Cross-modal Pre-training","authors":"Runhan Shi,&nbsp;Gufeng Yu,&nbsp;Letian Chen,&nbsp;Yang Yang","doi":"10.1016/j.aichem.2025.100085","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting chemical reaction yields is a critical yet challenging task in organic chemistry. While integrating multi-modal information has shown promise, existing methods typically encode the entire reaction in different modalities and then align these embeddings for the same reactions. Such a coarse-grained modal fusion strategy may neglect atomic-level interactions crucial for accurate predictions. Recognizing the crucial role of modal fusion in multi-modal learning and the limitations of current methods in real-world scenarios, we propose YieldFCP, a reaction <span><math><munder><mrow><mtext>Yield</mtext></mrow><mo>̲</mo></munder></math></span> prediction model based on <span><math><munder><mrow><mtext>F</mtext></mrow><mo>̲</mo></munder></math></span>ine-grained <span><math><munder><mrow><mtext>C</mtext></mrow><mo>̲</mo></munder></math></span>ross-modal <span><math><munder><mrow><mtext>P</mtext></mrow><mo>̲</mo></munder></math></span>re-training. Its cross-modal projector links the molecular SMILES sequence with 3D geometric data, focusing on the atomic-level interactions to achieve fine-grained modal fusion and enhance yield prediction. YieldFCP is pre-trained on a large-scale dataset leveraging cross-modal self-supervised learning techniques. Experimental results on the high-throughput experiments, real-world electronic laboratory notebook, and real-world organic reaction publication datasets demonstrate the effectiveness of our approach. Particularly, YieldFCP outperforms the state-of-the-art methods in real-world scenarios and successfully recognizes key components that determine reaction yields with valuable interpretability.</div></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":"3 1","pages":"Article 100085"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949747725000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting chemical reaction yields is a critical yet challenging task in organic chemistry. While integrating multi-modal information has shown promise, existing methods typically encode the entire reaction in different modalities and then align these embeddings for the same reactions. Such a coarse-grained modal fusion strategy may neglect atomic-level interactions crucial for accurate predictions. Recognizing the crucial role of modal fusion in multi-modal learning and the limitations of current methods in real-world scenarios, we propose YieldFCP, a reaction Yield̲ prediction model based on F̲ine-grained C̲ross-modal P̲re-training. Its cross-modal projector links the molecular SMILES sequence with 3D geometric data, focusing on the atomic-level interactions to achieve fine-grained modal fusion and enhance yield prediction. YieldFCP is pre-trained on a large-scale dataset leveraging cross-modal self-supervised learning techniques. Experimental results on the high-throughput experiments, real-world electronic laboratory notebook, and real-world organic reaction publication datasets demonstrate the effectiveness of our approach. Particularly, YieldFCP outperforms the state-of-the-art methods in real-world scenarios and successfully recognizes key components that determine reaction yields with valuable interpretability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial intelligence chemistry
Artificial intelligence chemistry Chemistry (General)
自引率
0.00%
发文量
0
审稿时长
21 days
期刊最新文献
Enhanced prediction of ionic liquid toxicity using a meta-ensemble learning framework with data augmentation YieldFCP: Enhancing Reaction Yield Prediction via Fine-grained Cross-modal Pre-training Data-driven modelling of corrosion behaviour in coated porous transport layers for PEM water electrolyzers AI-driven prediction of drug activity against Toxoplasma gondii: Data augmentation and deep neural networks for limited datasets Small-dataset-orientated data-driven screening for catalytic propane activation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1