Enhanced prediction of ionic liquid toxicity using a meta-ensemble learning framework with data augmentation

Safa Sadaghiyanfam , Hiqmet Kamberaj , Yalcin Isler
{"title":"Enhanced prediction of ionic liquid toxicity using a meta-ensemble learning framework with data augmentation","authors":"Safa Sadaghiyanfam ,&nbsp;Hiqmet Kamberaj ,&nbsp;Yalcin Isler","doi":"10.1016/j.aichem.2025.100087","DOIUrl":null,"url":null,"abstract":"<div><div>Ionic liquids are unique in their properties and potential to be green solvents. Still, the toxicity concern remains, compelling the need for excellent predictive models for safe design and application. This work reports the introduction of a general, robust meta-ensemble learning framework for predicting the toxicity of ionic liquids using molecular descriptors and fingerprints. The proposed model incorporates the Random Forest, Support Vector Regression, Categorical Boosting, Chemical Convolutional Neural Network as a base classifier and an Extreme Gradient Boosting meta-classifier. The framework uses Recursive Feature Elimination for feature selection and GridSearchCV for tuning the best hyperparameters. Without augmentation of the data, the RMSE equals 0.38, MAE equals 0.29, coefficient of determination (<span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>) equals 0.87, and Pearson correlation equals 0.94. Data augmentation further improved model performance: RMSE = 0.06, MAE = 0.024, <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> = 0.99, and a Pearson correlation of 0.99. In addition, this indicates that the data-augmented model outperforms all existing models with prominence in its strength and prediction capacity. Thus, the present framework provides a superior tool for computer-aided molecular design of safer and more effective ionic liquids.</div></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":"3 1","pages":"Article 100087"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949747725000041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ionic liquids are unique in their properties and potential to be green solvents. Still, the toxicity concern remains, compelling the need for excellent predictive models for safe design and application. This work reports the introduction of a general, robust meta-ensemble learning framework for predicting the toxicity of ionic liquids using molecular descriptors and fingerprints. The proposed model incorporates the Random Forest, Support Vector Regression, Categorical Boosting, Chemical Convolutional Neural Network as a base classifier and an Extreme Gradient Boosting meta-classifier. The framework uses Recursive Feature Elimination for feature selection and GridSearchCV for tuning the best hyperparameters. Without augmentation of the data, the RMSE equals 0.38, MAE equals 0.29, coefficient of determination (R2) equals 0.87, and Pearson correlation equals 0.94. Data augmentation further improved model performance: RMSE = 0.06, MAE = 0.024, R2 = 0.99, and a Pearson correlation of 0.99. In addition, this indicates that the data-augmented model outperforms all existing models with prominence in its strength and prediction capacity. Thus, the present framework provides a superior tool for computer-aided molecular design of safer and more effective ionic liquids.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用带数据增强功能的元集合学习框架加强离子液体毒性预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial intelligence chemistry
Artificial intelligence chemistry Chemistry (General)
自引率
0.00%
发文量
0
审稿时长
21 days
期刊最新文献
Enhanced prediction of ionic liquid toxicity using a meta-ensemble learning framework with data augmentation YieldFCP: Enhancing Reaction Yield Prediction via Fine-grained Cross-modal Pre-training Data-driven modelling of corrosion behaviour in coated porous transport layers for PEM water electrolyzers AI-driven prediction of drug activity against Toxoplasma gondii: Data augmentation and deep neural networks for limited datasets Small-dataset-orientated data-driven screening for catalytic propane activation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1