Robust correlation measures for informative frequency band selection in heavy-tailed signals

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Advanced Engineering Informatics Pub Date : 2025-02-08 DOI:10.1016/j.aei.2025.103174
Justyna Hebda-Sobkowicz , Radosław Zimroz , Anil Kumar , Agnieszka Wyłomańska
{"title":"Robust correlation measures for informative frequency band selection in heavy-tailed signals","authors":"Justyna Hebda-Sobkowicz ,&nbsp;Radosław Zimroz ,&nbsp;Anil Kumar ,&nbsp;Agnieszka Wyłomańska","doi":"10.1016/j.aei.2025.103174","DOIUrl":null,"url":null,"abstract":"<div><div>Vibration signals are commonly used to detect local damage in rotating machinery. However, raw signals are often noisy, particularly in crusher machines, where the technological process (falling pieces of rock) generates random impulses that complicate detection. To address this, signal pre-filtering (extracting the informative frequency band from noise-affected signals) is necessary. This paper proposes an algorithm for processing vibration signals from a bearing used in an ore crusher. Selecting informative frequency bands (IFBs) in the presence of impulsive noise is notably challenging. The approach employs correlation maps to detect cyclic behavior within specific frequency bands in the time–frequency domain (spectrogram), enabling the identification of IFBs. Robust correlation measures and median filtering are applied to enhance the correlation maps and improve the final IFB selection. Signal segmentation and the use of averaged results for IFB selection are also highlighted. The proposed trimmed and quadrant correlations are compared with the Pearson and Kendall correlations using simulated signal, real vibration signal from crusher in mining industry and acoustic signal measured on the test rig. Furthermore, the results of real vibration analyses are compared with established IFB selectors, including the spectral kurtosis, the alpha selector and the conditional variance-based selector.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"65 ","pages":"Article 103174"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034625000679","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Vibration signals are commonly used to detect local damage in rotating machinery. However, raw signals are often noisy, particularly in crusher machines, where the technological process (falling pieces of rock) generates random impulses that complicate detection. To address this, signal pre-filtering (extracting the informative frequency band from noise-affected signals) is necessary. This paper proposes an algorithm for processing vibration signals from a bearing used in an ore crusher. Selecting informative frequency bands (IFBs) in the presence of impulsive noise is notably challenging. The approach employs correlation maps to detect cyclic behavior within specific frequency bands in the time–frequency domain (spectrogram), enabling the identification of IFBs. Robust correlation measures and median filtering are applied to enhance the correlation maps and improve the final IFB selection. Signal segmentation and the use of averaged results for IFB selection are also highlighted. The proposed trimmed and quadrant correlations are compared with the Pearson and Kendall correlations using simulated signal, real vibration signal from crusher in mining industry and acoustic signal measured on the test rig. Furthermore, the results of real vibration analyses are compared with established IFB selectors, including the spectral kurtosis, the alpha selector and the conditional variance-based selector.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
期刊最新文献
InceptionV3 based blockage fault diagnosis of centrifugal pump Robust correlation measures for informative frequency band selection in heavy-tailed signals A hybrid CNN-LSTM model for involuntary fall detection using wrist-worn sensors Uncertainty quantification of aerosol jet 3D printing process using non-intrusive polynomial chaos and stochastic collocation Investigating the effects of data and image enhancement techniques on crack detection accuracy in FMPI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1