Experimental study on the mechanical behavior of artificially prepared stratified soil in triaxial compression tests

IF 5.6 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Acta Geotechnica Pub Date : 2024-10-14 DOI:10.1007/s11440-024-02426-5
Lisha Luo, Yang Yang, Zhifu Shen, Wangcheng Zhang, Zhihua Wang, Xudong Wang, Hongmei Gao, Qier Xu
{"title":"Experimental study on the mechanical behavior of artificially prepared stratified soil in triaxial compression tests","authors":"Lisha Luo,&nbsp;Yang Yang,&nbsp;Zhifu Shen,&nbsp;Wangcheng Zhang,&nbsp;Zhihua Wang,&nbsp;Xudong Wang,&nbsp;Hongmei Gao,&nbsp;Qier Xu","doi":"10.1007/s11440-024-02426-5","DOIUrl":null,"url":null,"abstract":"<div><p>Stratified soil is a type of widely distributed special soil, consisting of alternating interlayered soils with distinct properties in both terrestrial and marine sedimentation conditions. It is endowed with anisotropic physical properties and mechanical behavior by its unique laminar structure features. So far, its mechanical behavior has not been fully understood. To systematically investigate the laminar structure effects of stratified soil, artificially prepared stratified soil samples of silty clay interlayered by silty sand were studied. First, the laminar structure features of stratified soil in Yangtze River floodplain deposits at Nanjing, China, were summarized. Then, based on the laminar structure features, preparation method for stratified soil samples was proposed by stacking soil layers one by one, which was basically an integration of <i>soil paste plus consolidation method</i> for silty clay layer preparation and <i>water pluviation plus freezing method</i> for silty sand layer preparation. After verification of the sample preparation method, a series of consolidated-undrained triaxial compression tests were carried out to study the mechanical behavior of stratified soil. The effects of thickness of constituent layers, consolidation conditions (isotropic or anisotropic consolidation), and loading paths (conventional triaxial compression, constant-<i>p</i> compression, and lateral extension) were investigated. The results show that the mechanical behavior of stratified soil (including stress–strain curves, excessive pore pressure accumulation, sample failure modes, and strength index) generally falls in between the behavior of the two constituent layers of soil, i.e., a normally consolidated silty clay and a medium-dense silty sand. The silty clay layer thickness (with fixed silty sand layer thickness), consolidation conditions, and loading paths together determine the stratified soil behavior, either silty sand dominant or silty clay dominant. Laminar structure can improve volumetric dilation trend and thus increase undrained shear strength of stratified soil. The presence of silty clay layer would suppress shear banding development in stratified soil. The strength of stratified soil can be underestimated by experiments using disturbed or remolded samples where the laminar structure is partially or completely lost.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"20 2","pages":"543 - 562"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02426-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Stratified soil is a type of widely distributed special soil, consisting of alternating interlayered soils with distinct properties in both terrestrial and marine sedimentation conditions. It is endowed with anisotropic physical properties and mechanical behavior by its unique laminar structure features. So far, its mechanical behavior has not been fully understood. To systematically investigate the laminar structure effects of stratified soil, artificially prepared stratified soil samples of silty clay interlayered by silty sand were studied. First, the laminar structure features of stratified soil in Yangtze River floodplain deposits at Nanjing, China, were summarized. Then, based on the laminar structure features, preparation method for stratified soil samples was proposed by stacking soil layers one by one, which was basically an integration of soil paste plus consolidation method for silty clay layer preparation and water pluviation plus freezing method for silty sand layer preparation. After verification of the sample preparation method, a series of consolidated-undrained triaxial compression tests were carried out to study the mechanical behavior of stratified soil. The effects of thickness of constituent layers, consolidation conditions (isotropic or anisotropic consolidation), and loading paths (conventional triaxial compression, constant-p compression, and lateral extension) were investigated. The results show that the mechanical behavior of stratified soil (including stress–strain curves, excessive pore pressure accumulation, sample failure modes, and strength index) generally falls in between the behavior of the two constituent layers of soil, i.e., a normally consolidated silty clay and a medium-dense silty sand. The silty clay layer thickness (with fixed silty sand layer thickness), consolidation conditions, and loading paths together determine the stratified soil behavior, either silty sand dominant or silty clay dominant. Laminar structure can improve volumetric dilation trend and thus increase undrained shear strength of stratified soil. The presence of silty clay layer would suppress shear banding development in stratified soil. The strength of stratified soil can be underestimated by experiments using disturbed or remolded samples where the laminar structure is partially or completely lost.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Geotechnica
Acta Geotechnica ENGINEERING, GEOLOGICAL-
CiteScore
9.90
自引率
17.50%
发文量
297
审稿时长
4 months
期刊介绍: Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.
期刊最新文献
Mesoscale simulation of the compression and small-strain elastic shear behavior of illite nanoparticle assemblies A chemo-mechanical model of the swelling of anhydritic claystones Strength enhancement of Ca(OH)2 activated ground granulated blast furnace slag-stabilized dredged sediments using Na2CO3 Uncertainty quantification in data-driven modelling with application to soil properties prediction Sensitivity analysis on critical combinations of input parameters in DEM granular flow analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1