Deceleration of projectiles in sand

IF 5.6 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Acta Geotechnica Pub Date : 2024-09-26 DOI:10.1007/s11440-024-02408-7
S. R. Mercurio, M. Iskander, S. Bless, M. Omidvar
{"title":"Deceleration of projectiles in sand","authors":"S. R. Mercurio,&nbsp;M. Iskander,&nbsp;S. Bless,&nbsp;M. Omidvar","doi":"10.1007/s11440-024-02408-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the deceleration dynamics of projectiles during vertical penetration into silica sand targets up till the final depth of burial (DoB). Experiments were conducted with cone cylinder rods launched vertically into sand targets using a compressed air gun. Velocity–time records were obtained using a multichannel homodyne photon Doppler velocimeter (PDV) which tracked the back face of the penetrator as it decelerated, supplemented by high-speed video cameras from two views. A Poncelet framework was employed to describe the velocity–penetration relationship and drag and resistance coefficients were extracted by fitting the experimental measurements. Experiments were performed in dense and loose sand at a nominal impact velocity of 200 m/s, and experimental excursions were conducted with modified launch parameters. Mean drag and bearing resistance coefficients were found for sands under dry and wet pore saturation, as well as loose and dense packing. The work contributes essential insights for predicting the DoB of projectiles, particularly relevant for environmental remediation efforts in formerly used military sites.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"20 2","pages":"519 - 541"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02408-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the deceleration dynamics of projectiles during vertical penetration into silica sand targets up till the final depth of burial (DoB). Experiments were conducted with cone cylinder rods launched vertically into sand targets using a compressed air gun. Velocity–time records were obtained using a multichannel homodyne photon Doppler velocimeter (PDV) which tracked the back face of the penetrator as it decelerated, supplemented by high-speed video cameras from two views. A Poncelet framework was employed to describe the velocity–penetration relationship and drag and resistance coefficients were extracted by fitting the experimental measurements. Experiments were performed in dense and loose sand at a nominal impact velocity of 200 m/s, and experimental excursions were conducted with modified launch parameters. Mean drag and bearing resistance coefficients were found for sands under dry and wet pore saturation, as well as loose and dense packing. The work contributes essential insights for predicting the DoB of projectiles, particularly relevant for environmental remediation efforts in formerly used military sites.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Geotechnica
Acta Geotechnica ENGINEERING, GEOLOGICAL-
CiteScore
9.90
自引率
17.50%
发文量
297
审稿时长
4 months
期刊介绍: Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.
期刊最新文献
Mesoscale simulation of the compression and small-strain elastic shear behavior of illite nanoparticle assemblies A chemo-mechanical model of the swelling of anhydritic claystones Strength enhancement of Ca(OH)2 activated ground granulated blast furnace slag-stabilized dredged sediments using Na2CO3 Uncertainty quantification in data-driven modelling with application to soil properties prediction Sensitivity analysis on critical combinations of input parameters in DEM granular flow analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1