{"title":"Enhanced Gas Separation of PEBAX with Metal-Doped MOF-5","authors":"Sara Fattahi Bavandpur, Elahe Ahmadi Feijani","doi":"10.1007/s12633-024-03214-2","DOIUrl":null,"url":null,"abstract":"<div><p>Metal doping strategy is used to prepare MOF based fillers in order to fabricate effective mixed matrix membranes (MMMs) for gas separation. In this regard, two and three metallic MOF-5 is produced by using Co<sup>2+</sup> and Cd<sup>2+</sup> doping. Among the result MMMs, the best CO<sub>2</sub> permeability (386.1) and CO<sub>2</sub>/N<sub>2</sub> selectivity (73.2) are belonged to those containing Cd-Co-MOF-5 and Cd-MOF-5, respectively. With the aim of upgrading the gas separation ability of the MMMs, (3-Aminopropyl)triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) are employed as linkers to modify MMMs. The result MMMs render promoted behaviors in both gas permeability and selectivity in which APTES modified MMMs possess higher gas permeability (up to 556.0) and the modified ones with TEOS own higher gas selectivity (up to 90.1). Additionally, the effects of feed temperature and pressure on gas separation of membranes are also explored. The most impacts of temperature on CO<sub>2</sub>/N<sub>2</sub> selectivity are received in unmodified MMMs while for pressure effects, the modified ones experience the highest changes in CO<sub>2</sub>/N<sub>2</sub> selectivity. It should be noted that synthesized MOFs are analyzed by FT-IR, XRD, FESEM and N<sub>2</sub> adsorption–desorption analysis and the prepared membranes are also analyzed by FT-IR, XRD, FESEM, TGA, DSC, stress–strain and water contact angle analysis.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"17 2","pages":"465 - 486"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03214-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metal doping strategy is used to prepare MOF based fillers in order to fabricate effective mixed matrix membranes (MMMs) for gas separation. In this regard, two and three metallic MOF-5 is produced by using Co2+ and Cd2+ doping. Among the result MMMs, the best CO2 permeability (386.1) and CO2/N2 selectivity (73.2) are belonged to those containing Cd-Co-MOF-5 and Cd-MOF-5, respectively. With the aim of upgrading the gas separation ability of the MMMs, (3-Aminopropyl)triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) are employed as linkers to modify MMMs. The result MMMs render promoted behaviors in both gas permeability and selectivity in which APTES modified MMMs possess higher gas permeability (up to 556.0) and the modified ones with TEOS own higher gas selectivity (up to 90.1). Additionally, the effects of feed temperature and pressure on gas separation of membranes are also explored. The most impacts of temperature on CO2/N2 selectivity are received in unmodified MMMs while for pressure effects, the modified ones experience the highest changes in CO2/N2 selectivity. It should be noted that synthesized MOFs are analyzed by FT-IR, XRD, FESEM and N2 adsorption–desorption analysis and the prepared membranes are also analyzed by FT-IR, XRD, FESEM, TGA, DSC, stress–strain and water contact angle analysis.
期刊介绍:
The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.