{"title":"Optical Flow-Based Structural Anomaly Detection in Seismic Events From Video Data Combined With Computational Cost Reduction Through Deep Learning","authors":"Sifan Wang, Taisei Saida, Mayuko Nishio","doi":"10.1155/stc/4702519","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This study presents a novel approach for anomaly event detection in large-scale civil structures by integrating transfer learning (TL) techniques with extended node strength network analysis based on video data. By leveraging TL with BEiT + UPerNet pretrained models, the method identifies structural Region-of-Uninterest (RoU), such as windows and doors. Following this identification, the extended node strength network uses rich visual information from the video data, concentrating on structural components to detect disturbances in the nonlinearity vector field within these components. The proposed framework provides a comprehensive solution for anomaly detection, achieving high accuracy and reliability in identifying deviations from normal behavior. The approach was validated through two large-scale structural shaking table tests, which included both pronounced shear cracks and tiny cracks. The detection and quantitative analysis results demonstrated the effectiveness and robustness of the method in detecting varying degrees of anomalies in civil structural components. Additionally, the integration of TL techniques improved computational efficiency by approximately 10%, with a positive correlation observed between this efficiency gain and the proportion of structural RoUs in the video. This study advances anomaly detection in large-scale structures, offering a promising approach to enhancing safety and maintenance practices in critical infrastructure.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/4702519","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/4702519","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel approach for anomaly event detection in large-scale civil structures by integrating transfer learning (TL) techniques with extended node strength network analysis based on video data. By leveraging TL with BEiT + UPerNet pretrained models, the method identifies structural Region-of-Uninterest (RoU), such as windows and doors. Following this identification, the extended node strength network uses rich visual information from the video data, concentrating on structural components to detect disturbances in the nonlinearity vector field within these components. The proposed framework provides a comprehensive solution for anomaly detection, achieving high accuracy and reliability in identifying deviations from normal behavior. The approach was validated through two large-scale structural shaking table tests, which included both pronounced shear cracks and tiny cracks. The detection and quantitative analysis results demonstrated the effectiveness and robustness of the method in detecting varying degrees of anomalies in civil structural components. Additionally, the integration of TL techniques improved computational efficiency by approximately 10%, with a positive correlation observed between this efficiency gain and the proportion of structural RoUs in the video. This study advances anomaly detection in large-scale structures, offering a promising approach to enhancing safety and maintenance practices in critical infrastructure.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.