Polysulfides promote protein disulfide bond formation in microorganisms growing under anaerobic conditions.

IF 3.9 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied and Environmental Microbiology Pub Date : 2025-02-07 DOI:10.1128/aem.01926-24
Yuping Xin, Qingda Wang, Jianming Yang, Xiaohua Wu, Yongzhen Xia, Luying Xun, Huaiwei Liu
{"title":"Polysulfides promote protein disulfide bond formation in microorganisms growing under anaerobic conditions.","authors":"Yuping Xin, Qingda Wang, Jianming Yang, Xiaohua Wu, Yongzhen Xia, Luying Xun, Huaiwei Liu","doi":"10.1128/aem.01926-24","DOIUrl":null,"url":null,"abstract":"<p><p>Polysulfides commonly occur in anaerobic, microbial active environments, where they play key roles in sulfur cycling and redox transformations. Anaerobic survival of microorganisms requires the formation of protein disulfide bond (DSB). The relationship between polysulfides and anaerobic DSB formation has not been studied so far. Herein, we discovered that polysulfides can efficiently mediate protein DSB formation of microorganisms under anaerobic conditions. We used polysulfides to treat proteins, including roGFP2, Trx1, and DsbA, under anaerobic conditions and found that all three proteins formed intramolecular DSB <i>in vitro</i>. Under anaerobic conditions, <i>Escherichia coli</i> Δ<i>dsbB</i> displayed reduced growth and decreased intracellular protein DSB levels, but polysulfide treatment restored both growth and DSB content. Similarly, polysulfide treatment of <i>E. coli</i> Δ<i>dsbA</i> promoted periplasmic roGFP2 DSB formation and recovered growth under anaerobic conditions. Furthermore, treating <i>Schizosaccharomyces pombe</i> and <i>Cupriavidus pinatubonensis</i> JMP134 with polysulfides increased their intracellular protein DSB content. Collectively, these findings demonstrate that polysulfides can promote DSB formation independently of known enzymatic DSB-mediated systems and the presence of oxygen, thereby benefiting the survival of microorganisms in anaerobic habitats.IMPORTANCEHow polysulfides enhance the adaption of microorganisms to anaerobic environments remains unclear. Our study reveals that polysulfides efficiently facilitate protein DSB formation under anaerobic conditions. Polysulfides contain zero-valent sulfur atoms (S<sup>0</sup>), which can be transferred to the thiol group of cysteine residue. This S<sup>0</sup> atom then accepts two electrons from two cysteine residues and is reduced to H<sub>2</sub>S, leaving the two cysteines linked by a disulfide bond. Anaerobic growth of microorganisms benefits from the formation of DSB. These findings pave the way for a deeper understanding of the intricate relationship between polysulfides and microorganisms in various environmental contexts.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0192624"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.01926-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polysulfides commonly occur in anaerobic, microbial active environments, where they play key roles in sulfur cycling and redox transformations. Anaerobic survival of microorganisms requires the formation of protein disulfide bond (DSB). The relationship between polysulfides and anaerobic DSB formation has not been studied so far. Herein, we discovered that polysulfides can efficiently mediate protein DSB formation of microorganisms under anaerobic conditions. We used polysulfides to treat proteins, including roGFP2, Trx1, and DsbA, under anaerobic conditions and found that all three proteins formed intramolecular DSB in vitro. Under anaerobic conditions, Escherichia coli ΔdsbB displayed reduced growth and decreased intracellular protein DSB levels, but polysulfide treatment restored both growth and DSB content. Similarly, polysulfide treatment of E. coli ΔdsbA promoted periplasmic roGFP2 DSB formation and recovered growth under anaerobic conditions. Furthermore, treating Schizosaccharomyces pombe and Cupriavidus pinatubonensis JMP134 with polysulfides increased their intracellular protein DSB content. Collectively, these findings demonstrate that polysulfides can promote DSB formation independently of known enzymatic DSB-mediated systems and the presence of oxygen, thereby benefiting the survival of microorganisms in anaerobic habitats.IMPORTANCEHow polysulfides enhance the adaption of microorganisms to anaerobic environments remains unclear. Our study reveals that polysulfides efficiently facilitate protein DSB formation under anaerobic conditions. Polysulfides contain zero-valent sulfur atoms (S0), which can be transferred to the thiol group of cysteine residue. This S0 atom then accepts two electrons from two cysteine residues and is reduced to H2S, leaving the two cysteines linked by a disulfide bond. Anaerobic growth of microorganisms benefits from the formation of DSB. These findings pave the way for a deeper understanding of the intricate relationship between polysulfides and microorganisms in various environmental contexts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
期刊最新文献
Retrospective analysis of antimicrobial resistance associated with bovine respiratory disease. Persistence in time: the hunt for Bacillus anthracis at a historic tannery site in Austria reveals genetic diversity thought extinct. Polysulfides promote protein disulfide bond formation in microorganisms growing under anaerobic conditions. Bumble bee gut microbial community structure differs between species and commercial suppliers, but metabolic potential remains largely consistent. Comparative assessment of a restored and natural wetland using 13C-DNA SIP reveals a higher potential for methane production in the restored wetland.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1